Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 8(4)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33137900

ABSTRACT

Physical activity (PA) during pregnancy is associated with maternal benefits. Therefore, innovative strategies that promote PA are needed. This study investigated the acceptability and feasibility of a sedentary behavior (SB) reduction program during pregnancy. The study employed a semi-experimental research design using historical control subjects. The intervention group program consisted of individual face-to-face guidance, automatic alerts during SB from wearable devices, and self-monitoring of SB patterns, from 20 gestation weeks to delivery. PA and SB, assessed using a wearable device, were compared with those of the control group at 24-27 (T1) and 32-35 (T2) weeks of gestation. In 56 women, the mean wearing time was 90.2 days in the intervention phase. The response rate to automatic SB alerts was 55.5% at T1 and 63.0% at T2. Self-monitoring more than twice or thrice a week was 77.8% at T1 and 59.3% at T2. There was no significant difference in the cumulative SB time at T2 between the two groups (F = 2.31, p = 0.132). This program appears to be acceptable and feasible for pregnant women; however, SB reduction effect of the intervention remains unclear. Improvements to increase the response rate to automatic SB alerts and the frequency of self-monitoring are needed.

2.
J Phys Chem B ; 113(13): 4338-46, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19281201

ABSTRACT

The conformational behaviors of N-alkyl-N-methylpyrrolidinium bis-(trifluoromethanesulfonyl) amide ionic liquids (alkyl; propyl and butyl, [P(1n)][TFSA]; n = 3 and 4) were studied by Raman spectroscopy in the frequency range of 200-1700 cm(-1) at different temperatures. Observed Raman spectra in the frequency range 870-960 cm(-1) for [P(13)][TFSA] and at 860-950 cm(-1) for [P(14)][TFSA] depend on the temperature, indicating that pseudo rotational isomerization of the pyrrolidinium ring exists in the ionic liquids. DFT calculations revealed that the pseudo rotational potential energy surfaces for P(13)(+) and P(14)(+) ions were similar to each other, i.e., the e6 isomer is the global minimum, whereas the three other isomers e1, e4, and e5 are ca. 3 kJ mol(-1) higher in energy. Optimized geometries with no imaginary frequency were successfully obtained for the e6, e1, and e4 isomers. For both cations, the theoretical Raman spectra of the e6 isomers reproduce well the observed data. To explain their observed Raman spectra in a reasonable way, it is necessary to consider one or more species as predicted by DFT calculations, i.e., the e4 isomer of P(13)(+) rather than the e1, or the e1 isomer of P(14)(+) rather than the e4. In addition, the torsion energy potentials of the alkyl chains of the cations were scanned by DFT calculations. It turns out that the alkyl chains of the cations prefer all trans conformations. It should be emphasized that the alkyl chains of the pyrrolidinium cations show remarkably different conformational behaviors comparing with those of the imidazolium. The isomerization enthalpies Delta(iso)H degrees from the e6 to the e4 isomer of P(13)(+) and to e1 of P(14)(+) were reasonably estimated from the temperature dependence of Raman spectra based on our proposed assignments to be 2.9 kJ mol(-1) for P(13)(+) and 4.2 kJ mol(-1) for P(14)(+), respectively. Thus evaluated experimental Delta(iso)H degrees values, which may contain some uncertainties, are in agreement with those predicted by DFT calculations and MD simulations suggesting that pseudo rotational isomerization equilibria are established in the examined N-alkyl-N-methylpyrrolidinium ionic liquids. The conformational behavior of TFSA(-) was also investigated. The Delta(iso)H degrees from the trans (trifluoromethyl groups on opposite sides of the S-N-S plane) to the cis isomer were evaluated to be 4.2 kJ mol(-1) for [P(13)][TFSA] and 3.5 kJ mol(-1) for [P(14)][TFSA], respectively, which are similar to that for the 1-ethyl-3methylimidazolium ionic liquid.

SELECTION OF CITATIONS
SEARCH DETAIL
...