Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Cell Biol Int ; 48(5): 638-646, 2024 May.
Article in English | MEDLINE | ID: mdl-38328902

ABSTRACT

The bile salt export pump (ABCB11/BSEP) is a hepatocyte plasma membrane-resident protein translocating bile salts into bile canaliculi. The sequence alignment of the four full-length transporters of the ABCB subfamily (ABCB1, ABCB4, ABCB5 and ABCB11) indicates that the NBD-NBD contact interface of ABCB11 differs from that of other members in only four residues. Notably, these are all located in the noncanonical nucleotide binding site 1 (NBS1). Substitution of all four deviant residues with canonical ones (quadruple mutant) significantly decreased the transport activity of the protein. In this study, we mutated two deviant residues in the signature sequence to generate a double mutant (R1221G/E1223Q). Furthermore, a triple mutant (E502S/R1221G/E1223Q) was generated, in which the deviant residues of the signature sequence and Q-loop were mutated concurrently to canonical residues. The double and triple mutants showed 80% and 60%, respectively, of the activity of wild-type BSEP. As expected, an increasing number of mutations gradually impair transport as an intricate network of interactions within the ABC proteins ensures proper functioning.


Subject(s)
ATP-Binding Cassette Transporters , Nucleotides , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Nucleotides/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Mutation/genetics , Binding Sites
2.
Clin Chem Lab Med ; 59(10): 1735-1744, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34187131

ABSTRACT

OBJECTIVES: External quality assessment (EQA) schemes provide information on individual and general analytical performance of participating laboratories and test systems. The aim of this study was to investigate the use and performance of SARS-CoV-2 virus genome detection systems in Austrian laboratories and their preparedness to face challenges associated with the pandemic. METHODS: Seven samples were selected to evaluate performance and estimate variability of reported results. Notably, a dilution series was included in the panel as a measure of reproducibility and sensitivity. Several performance criteria were evaluated for individual participants as well as in the cohort of all participants. RESULTS: A total of 109 laboratories participated and used 134 platforms, including 67 different combinations of extraction and PCR platforms and corresponding reagents. There were no false positives and 10 (1.2%) false negative results, including nine in the weakly positive sample (Ct ∼35.9, ∼640 copies/mL). Twenty (22%) laboratories reported results of mutation detection. Twenty-five (19%) test systems included amplification of human RNA as evidence of proper sampling. The overall linearity of Ct values from individual test systems for the dilution series was good, but inter-assay variability was high. Both operator-related and systematic failures appear to have caused incorrect results. CONCLUSIONS: Beyond providing certification for participating laboratories, EQA provides the opportunity for participants to evaluate their performance against others so that they may improve operating procedures and test systems. Well-selected EQA samples offer additional inferences to be made about assay sensitivity and reproducibility, which have practical applications.


Subject(s)
COVID-19/diagnosis , Genome, Viral , Quality Assurance, Health Care , SARS-CoV-2/isolation & purification , Austria/epidemiology , COVID-19/virology , Humans , Laboratories , Molecular Diagnostic Techniques/methods , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Clin Chem Lab Med ; 59(5): 987-994, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33554519

ABSTRACT

OBJECTIVES: The qualitative results of SARS-CoV-2 specific real-time reverse transcription (RT) PCR are used for initial diagnosis and follow-up of Covid-19 patients and asymptomatic virus carriers. However, clinical decision-making and health management policies often are based additionally on cycle threshold (Ct) values (i.e., quantitative results) to guide patient care, segregation and discharge management of individuals testing positive. Therefore, an analysis of inter-protocol variability is needed to assess the comparability of the quantitative results. METHODS: Ct values reported in a SARS-CoV-2 virus genome detection external quality assessment challenge were analyzed. Three positive and two negative samples were distributed to participating test laboratories. Qualitative results (positive/negative) and quantitative results (Ct values) were assessed. RESULTS: A total of 66 laboratories participated, contributing results from 101 distinct test systems and reporting Ct values for a total of 92 different protocols. In all three positive samples, the means of the Ct values for the E-, N-, S-, RdRp-, and ORF1ab-genes varied by less than two cycles. However, 7.7% of reported results deviated by more than ±4.0 (maximum 18.0) cycles from the respective individual means. These larger deviations appear to be systematic errors. CONCLUSIONS: In an attempt to use PCR diagnostics beyond the identification of infected individuals, laboratories are frequently requested to report Ct values along with a qualitative result. This study highlights the limitations of interpreting Ct values from the various SARS-CoV genome detection protocols and suggests that standardization is necessary in the reporting of Ct values with respect to the target gene.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , DNA, Viral/analysis , Genome, Viral , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/chemistry , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/statistics & numerical data , False Negative Reactions , False Positive Reactions , Humans , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466755

ABSTRACT

The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). Over the past few years, several small molecular weight compounds have been identified, which hold the potential to treat these genetic diseases (chaperones and potentiators). As the treatment response is mutation-specific, genetic analysis of the patients and their families is required. Furthermore, some of the mutations are refractory to therapy, with the only remaining treatment option being liver transplantation. In this review, we will focus on the molecular structure of ABCB11, reported mutations involved in cholestasis and current treatment options for inherited BSEP deficiencies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic/genetics , Mutation , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Biological Transport , Cholestasis, Intrahepatic/drug therapy , Cholestasis, Intrahepatic/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use
5.
PLoS Genet ; 16(10): e1009016, 2020 10.
Article in English | MEDLINE | ID: mdl-33031417

ABSTRACT

Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Biological Transport/genetics , Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , AAA Domain/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adenosine Triphosphate/genetics , Amino Acid Sequence , Binding Sites/genetics , Biological Transport, Active/genetics , Catalytic Domain/genetics , Glutamic Acid/genetics , Humans , Hydrolysis , Methionine/genetics , Molecular Dynamics Simulation , Mutation/genetics , Nucleotides/genetics , Protein Binding/genetics , Protein Domains/genetics
6.
Pharmacol Res Perspect ; 8(2): e00572, 2020 04.
Article in English | MEDLINE | ID: mdl-32232949

ABSTRACT

Human P-glycoprotein (P-gp) is a multispecific drug-efflux transporter, which plays an important role in drug resistance and drug disposition. Recent cryo-electron microscopy structures confirmed its rotationally symmetric architecture, which allows dual interaction with ATP and substrates. We here report the existence of two distinct, symmetry-related outer gates. Experiments were aided by availability of the X-ray structure of a homodimeric eukaryotic homolog of P-gp from red alga (CmABCB1), which defined the role of an apical tyrosine residue (Y358) in outer gate formation. We mutated analogous tyrosine residues in each half of the human full-length transporter (Y310, Y953) to alanine. These mutants were introduced in engineered transporters which bind rhodamine 123 in one of two symmetry-related binding modes only. Outer gate dysfunction was detected by a loss of active transport characteristics, while these mutants retained the ability for outward downhill transport. Our data demonstrate that symmetric tyrosine residues Y310 and Y953 are involved in formation of two distinct symmetry-related outer gates, which operate contingent on the rhodamine 123 binding mode. Hence, the rotationally symmetric architecture of P-gp, which determines duality in ATP binding and rhodamine 123 interaction, also forms the basis for the existence of two independently operating outer gates.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Rhodamine 123/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Biological Transport, Active , HEK293 Cells , Humans
7.
Sci Rep ; 10(1): 2589, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054924

ABSTRACT

P-glycoprotein (ABCB1) is an important component of barrier tissues that extrudes a wide range of chemically unrelated compounds. ABCB1 consists of two transmembrane domains forming the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that provide the energy by binding and hydrolyzing ATP. We analyzed the mechanistic and energetic properties of the NBD dimer via molecular dynamics simulations. We find that MgATP stabilizes the NBD dimer through strong attractive forces by serving as an interaction hub. The irreversible ATP hydrolysis step converts the chemical energy stored in the phosphate bonds of ATP into potential energy. Following ATP hydrolysis, interactions between the NBDs and the ATP hydrolysis products MgADP + Pi remain strong, mainly because Mg2+ forms stabilizing interactions with ADP and Pi. Despite these stabilizing interactions MgADP + Pi are unable to hold the dimer together, which becomes separated by avid interactions of MgADP + Pi with water. ATP binding to the open NBDs and ATP hydrolysis in the closed NBD dimer represent two steps of energy input, each leading to the formation of a high energy state. Relaxation from these high energy states occurs through conformational changes that push ABCB1 through the transport cycle.


Subject(s)
Adenosine Triphosphate/metabolism , Nucleotides/metabolism , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adenosine Diphosphate/metabolism , Animals , Binding Sites , Biomechanical Phenomena , Energy Metabolism , Humans , Hydrolysis , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization
8.
Int J Nanomedicine ; 14: 2207-2218, 2019.
Article in English | MEDLINE | ID: mdl-30988617

ABSTRACT

BACKGROUND: Psoralen (PSO), a major active component of Psoralea corylifolia, has been shown to overcome multidrug resistance in cancer. A drug carrier comprising a lipid-monolayer shell and a biodegradable polymer core for sustained delivery and improved efficacy of drug have exhibited great potential in efficient treatment of cancers. METHODS: The PSO-loaded lipid polymer hybrid nanoparticles were prepared and characterized. In vitro cytotoxicity assay, cellular uptake, cell cycle analysis, detection of ROS level and mitochondrial membrane potential (ΔΨm) and western blot were performed. RESULTS: The P-LPNs enhanced the cytotoxicity of doxorubicin (DOX) 17-fold compared to free DOX in multidrug resistant HepG2/ADR cells. Moreover, P-LPNs displayed pro-apoptotic activity, increased levels of ROS and depolarization of ΔΨm. In addition, there were no signifi-cant effects on cellular uptake of DOX, cell cycle arrest, or the expression of P-glycoprotein. Mechanistic studies suggested that P-LPNs enhanced DOX cytotoxicity by increased release of cytochrome c and enhanced caspase3 cleavage, causing apoptosis in HepG2/ADR cells. CONCLUSION: The lipid-polymer hybrid nanoparticles can be considered a powerful and promising drug delivery system for effective cancer chemotherapy.


Subject(s)
Doxorubicin/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Ficusin/pharmacology , Lipids/chemistry , Nanoparticles/chemistry , Polymers/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Hep G2 Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Nanoparticles/administration & dosage , Nanoparticles/ultrastructure , Reactive Oxygen Species/metabolism
9.
Transl Cancer Res ; 8(1): 319-329, 2019 Feb.
Article in English | MEDLINE | ID: mdl-35116761

ABSTRACT

Breast cancer is the leading cause of death from cancer in women worldwide. Chemotherapy represents one key treatment modality for the clinical management of breast cancer. However, ATP-binding cassette (ABC) transporter mediated active efflux of structurally and mechanistically different cytotoxic compounds results in multidrug resistance (MDR), eventually leading to failure of chemotherapy. The concept of combining anti-cancer drugs and transport inhibitors has been advocated as a concept for re-sensitization of resistant breast cancer to chemotherapy. Whether inhibition of efflux transporters may have the potential to improve therapeutic outcomes is discussed controversially. In this review we discuss challenges in the treatment of breast cancer, the role of MDR in development and the potential of natural products to overcome MDR.

10.
Oncol Rep ; 40(2): 1055-1063, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29901161

ABSTRACT

In the present study, a lipid-polymer hybrid drug carrier system was developed to encapsulate psoralen (PSO), a multidrug resistance reversal agent and traditional Chinese medicine. Emphasis was focused the parameters that influence physicochemical characteristics, and then the drug release profile, stability, cytotoxicity and drug resistance reversal effect of the lipid-polymer hybrid nanoparticles (LPNs) were investigated. It was found that various formulation parameters affected NP size, drug loading (DL) and release characteristics. Hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-carboxy(polyethylene glycol)2000 increased the ζ potential and thus the stability of the NPs, but also enlarged their diameter. The amount of PSO influenced their DL and encapsulation efficiency, but did not show any effect on drug release kinetics. Next, the stability of the LPNs in different media and their storage characteristics were assessed. Finally, the cytotoxicity and multidrug resistance reversal effect was studied in the K562 and HepG2 cell lines. The analysis of half maximal inhibitory concentration values demonstrated that combination therapy with doxorubicin (DOX) and PSO-loaded LPNs (P-LPNs) was 14- and 23-fold more effective than a single-dose DOX treatment in resistant K562 and HepG2 cells, respectively, and 2.2- and 2.1-fold more effective than a single-dose combination regimen of DOX and PSO in solution, respectively. These data indicate that the LPNs have superior properties compared with a combination therapy in solution.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Ficusin/chemistry , Ficusin/pharmacology , Lipids/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Resistance, Multiple/drug effects , Hep G2 Cells , Humans , K562 Cells , Particle Size , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry
11.
Neuropsychopharmacology ; 43(12): 2408-2417, 2018 11.
Article in English | MEDLINE | ID: mdl-29773909

ABSTRACT

Amphetamine abuse is a major public health concern for which there is currently no effective treatment. To develop effective treatments, the mechanisms by which amphetamine produces its abuse-related effects need to be fully understood. It is well known that amphetamine exerts its actions by targeting high-affinity transporters for monoamines, in particular the cocaine-sensitive dopamine transporter. Organic cation transporter 3 (OCT3) has recently been found to play an important role in regulating monoamine signaling. However, whether OCT3 contributes to the actions of amphetamine is unclear. We found that OCT3 is expressed in dopamine neurons. Then, applying a combination of in vivo, ex vivo, and in vitro approaches, we revealed that a substantial component of amphetamine's actions is OCT3-dependent and cocaine insensitive. Our findings support OCT3 as a new player in the actions of amphetamine and encourage investigation of this transporter as a potential new target for the treatment of psychostimulant abuse.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Octamer Transcription Factor-3/biosynthesis , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
12.
Biophys J ; 114(2): 331-342, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29401431

ABSTRACT

P-glycoprotein, also known as multidrug resistance protein 1 or ABCB1, can export a wide range of chemically unrelated compounds, including chemotherapeutic drugs. ABCB1 consists of two transmembrane domains that form the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that energize substrate transport by ATP binding and hydrolysis. ATP binding triggers dimerization of the NBDs, which switches the transporter from an inward facing to an outward facing transmembrane domain conformation. We performed MD simulations to study the dynamic behavior of the NBD dimer in the presence or absence of nucleotides. In the apo configuration, the NBDs were overall attractive to each other as shown in the potential of mean force profile, but the energy well was shallow and broad. In contrast, a sharp and deep energy minimum (∼-42 kJ/mol) was found in the presence of ATP, leading to a well-defined conformation. Motif interaction network analyses revealed that ATP stabilizes the NBD dimer by serving as the central hub for interdomain connections. Simulations showed that forces promoting dimerization are multilayered, dominated by electrostatic interactions between the nucleotide and conserved amino acids of the signature sequence and the Walker A motif. In addition, direct and water-bridged hydrogen bonds between NBDs provided conformation-defining interactions. Importantly, we characterized a largely unrecognized but essential contribution from hydrophobic interactions between the adenine moiety of the nucleotides and a hydrophobic surface of the X-loop to the stabilization of the nucleotide-bound NBD dimer. These hydrophobic interactions lead to a sharp energy minimum, thereby conformationally restricting the nucleotide-bound state.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Nucleotides/metabolism , Protein Multimerization , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Quaternary
13.
Mol Pharmacol ; 92(4): 401-413, 2017 10.
Article in English | MEDLINE | ID: mdl-28784620

ABSTRACT

The bile salt export pump (BSEP/ABCB11) transports bile salts from hepatocytes into bile canaliculi. Its malfunction is associated with severe liver disease. One reason for functional impairment of BSEP is systemic administration of drugs, which as a side effect inhibit the transporter. Therefore, drug candidates are routinely screened for potential interaction with this transporter. Hence, understanding the functional biology of BSEP is of key importance. In this study, we engineered the transporter to dissect interdomain communication paths. We introduced mutations in noncanonical and in conserved residues of either of the two nucleotide binding domains and determined the effect on BSEP basal and substrate-stimulated ATPase activity as well as on taurocholate transport. Replacement of the noncanonical methionine residue M584 (Walker B sequence of nucleotide binding site 1) by glutamate imparted hydrolysis competency to this site. Importantly, this mutation was able to sustain 15% of wild-type transport activity, when the catalytic glutamate of the canonical nucleotide binding site 2 was mutated to glutamine. Kinetic modeling of experimental results for the ensuing M584E/E1244Q mutant suggests that a transfer of hydrolytic capacity from the canonical to the noncanonical nucleotide binding site results in loss of active and adoption of facilitative characteristics. This facilitative transport is ATP-gated. To the best of our knowledge, this result is unprecedented in ATP-binding cassette proteins with one noncanonical nucleotide binding site. Our study promotes an understanding of the domain interplay in BSEP as a basis for exploration of drug interactions with this transporter.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic/metabolism , Taurocholic Acid/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/chemistry , Binding Sites/physiology , Biological Transport/physiology , HEK293 Cells , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
14.
Pharmacol Res Perspect ; 5(3): e00325, 2017 06.
Article in English | MEDLINE | ID: mdl-28603639

ABSTRACT

Point mutations of ATP-binding cassette (ABC) proteins are a common cause of human diseases. Available crystal structures indicate a similarity in the architecture of several members of this protein family. Their molecular architecture makes these proteins vulnerable to mutation, when critical structural elements are affected. The latter preferentially involve the two transmembrane domain (TMD)/nucleotide-binding domain (NBD) interfaces (transmission interfaces), formation of which requires engagement of coupling helices of intracellular loops with NBDs. Both, formation of the active sites and engagement of the coupling helices, are contingent on correct positioning of ICLs 2 and 4 and thus an important prerequisite for proper folding. Here, we show that active site compounds are capable of rescuing P-glycoprotein (P-gp) mutants ∆Y490 and ∆Y1133 in a concentration-dependent manner. These trafficking deficient mutations are located at the transmission interface in pseudosymmetric position to each other. In addition, the ability of propafenone analogs to correct folding correlates with their ability to inhibit transport of model substrates. This finding indicates that folding correction and transport inhibition by propafenone analogs are brought about by binding to the active sites. Furthermore, this study demonstrates an asymmetry in folding correction with cis-flupentixol, which reflects the asymmetric binding properties of this modulator to P-gp. Our results suggest a mechanistic model for corrector action in a model ABC transporter based on insights into the molecular architecture of these transporters.

15.
J Hepatol ; 66(1): 95-101, 2017 01.
Article in English | MEDLINE | ID: mdl-27593105

ABSTRACT

BACKGROUND & AIMS: Cholestasis is characterized by intrahepatic accumulation of potentially cytotoxic bile acids (BAs) subsequently leading to liver injury with disruption of hepatocellular integrity, inflammation, fibrosis and ultimately liver cirrhosis. Bile salt export pump (BSEP/ABCB11) is the main canalicular BA transporter and therefore the rate limiting step for hepatobiliary BA excretion. In this study we aimed to investigate the role of BSEP/ABCB11 in the development of acquired cholestatic liver and bile duct injury. METHODS: Wild-type (WT) and BSEP knockout (BSEP-/-) mice were subjected to common bile duct ligation (CBDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding as models for cholestasis with biliary obstruction and bile duct injury. mRNA expression profile, serum biochemistry, liver histology, immunohistochemistry, hepatic hydroxyproline levels and BA composition as well as biliary pressure were assessed. RESULTS: BSEP-/- mice were protected against acquired cholestatic liver injury induced by 7days of CBDL or 4weeks of DDC feeding, as reflected by unchanged serum levels of liver transaminases, alkaline phosphatase and BAs. Notably, BSEP-/- mice were also protected from cholestasis-induced hepatic inflammation and biliary fibrosis. In line with induced BA detoxification/hydroxylation pathways in BSEP-/- mice, polyhydroxylated BAs were increased 4-fold after CBDL and 6-fold after DDC feeding in comparison with cholestatic WT mice. Finally, following CBDL, biliary pressure in WT mice increased up to 47mmH2O but remained below 11mmH2O in BSEP-/- mice. CONCLUSION: Metabolic preconditioning with subsequent changes in BA metabolism favors detoxification of potentially toxic BAs and thereby protects BSEP-/- mice from cholestatic liver and bile duct injury. LAY SUMMARY: Reduced hepatobiliary bile acid transport due to loss of BSEP function leads to increased hydroxylation of bile acids in the liver. Metabolic preconditioning with a hydrophilic bile pool protects the BSEP-/- mice from acquired cholestatic liver disease.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Bile Acids and Salts/metabolism , Bile Ducts , Cholestasis, Intrahepatic/metabolism , Hepatocytes/metabolism , Ligation/methods , Therapeutic Occlusion/methods , Animals , Bile Canaliculi , Bile Ducts/physiopathology , Bile Ducts/surgery , Cholestasis, Intrahepatic/prevention & control , Mice
16.
Drug Deliv ; 23(9): 3350-3357, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27098896

ABSTRACT

Breast cancer is a serious threat to women's health, because multidrug resistance (MDR) has hampered treatment and prognosis. Nanodelivery of anticancer agents is a new technology to be exploited in the treatment of patients, because it bypasses multispecific drug efflux transporters such as P-glycoprotein (ABCB1), multidrug resistance protein-1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). Drugs can be delivered to tumor tissue by passive and active tumor targeting strategies, which may reduce or reverse drug resistance. This review will mainly focus on MDR-associated proteins, as well as various nanoparticle formulations developed to overcome MDR in breast cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Nanoparticles/chemistry , Drug Delivery Systems/methods
17.
ChemMedChem ; 11(12): 1380-94, 2016 06 20.
Article in English | MEDLINE | ID: mdl-26970257

ABSTRACT

The transmembrane ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are widely recognized for their role in cancer multidrug resistance and absorption and distribution of compounds. Furthermore, they are linked to drug-drug interactions and toxicity. Nevertheless, due to their polyspecificity, a molecular understanding of the ligand-transporter interaction, which allows designing of both selective and dual inhibitors, is still in its infancy. This study comprises a combined approach of synthesis, in silico prediction, and in vitro testing to identify molecular features triggering transporter selectivity. Synthesis and testing of a series of 15 propafenone analogues with varied rigidity and basicity of substituents provide first trends for selective and dual inhibitors. Results indicate that both the flexibility of the substituent at the nitrogen atom, as well as the basicity of the nitrogen atom, trigger transporter selectivity. Furthermore, inhibitory activity of compounds at P-gp seems to be much more influenced by logP than those at BCRP. Exploiting these differences further should thus allow designing specific inhibitors for these two polyspecific ABC-transporters.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP-Binding Cassette Transporters/metabolism , Neoplasm Proteins/metabolism , Propafenone/pharmacology , Female , Humans , In Vitro Techniques , Propafenone/analogs & derivatives , Structure-Activity Relationship
18.
Mol Pharm ; 13(1): 163-71, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26642869

ABSTRACT

The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Bromocriptine/pharmacology , Animals , CHO Cells , Cell Line , Cholestasis/prevention & control , Computer Simulation , Cricetulus , Swine
19.
Drug Discov Today Technol ; 12: e87-94, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25027379

ABSTRACT

The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cholestasis, Intrahepatic/drug therapy , Cystic Fibrosis/drug therapy , Proteostasis Deficiencies/drug therapy , Small Molecule Libraries/pharmacology , ATP-Binding Cassette Transporters/genetics , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Cholestasis, Intrahepatic/metabolism , Clinical Trials as Topic , Cystic Fibrosis/metabolism , Drug Discovery , Humans , Protein Binding , Protein Folding , Protein Transport , Proteostasis Deficiencies/metabolism , Small Molecule Libraries/therapeutic use
20.
FASEB J ; 28(10): 4335-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25016028

ABSTRACT

For a primary active pump, such as the human ATP-binding-cassette (ABC) transporter ABCB1, coupling of drug-binding by the two transmembrane domains (TMDs) to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the transport mechanism, but is poorly understood at the biochemical level. Structure data suggest that signals are transduced through intracellular loops of the TMDs that slot into grooves on the NBDs. At the base of these grooves is the Q loop. We therefore mutated the eponymous glutamine in one or both NBD Q loops and measured the effect on conformation and function by using a conformation-sensitive antibody (UIC2) and a fluorescent drug (Bodipy-verapamil), respectively. We showed that the double mutant is trapped in the inward-open state, which binds the drug, but cannot couple to the ATPase cycle. Our data also describe marked redundancy within the transport mechanism, because single-Q-loop mutants are functional for Bodipy-verapamil transport. This result allowed us to elucidate transduction pathways from twin drug-binding cavities to the Q loops using point mutations to favor one cavity over the other. Together, the data show that the Q loop is the central flexion point where the aspect of the drug-binding cavities is coupled to the ATP catalytic cycle.


Subject(s)
Adenosine Triphosphate/metabolism , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Amino Acid Sequence , Binding Sites , Biological Transport, Active , HEK293 Cells , Humans , Molecular Sequence Data , Point Mutation , Protein Binding , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...