Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1227357, 2023.
Article in English | MEDLINE | ID: mdl-37811377

ABSTRACT

Regular checkups for thyroid-stimulating hormone (TSH) levels are essential for the diagnosis of thyroid disease. The enzyme-linked immunosorbent assay (ELISA) technique is a standard method for detecting TSH in the serum or plasma of hospitalized patients. A recently developed next-generation ELISA, the digital immunoassay (d-IA), has facilitated detection of molecules with ultra-high-sensitivity. In this study, we developed a TSH assay system using the d-IA platform. By utilizing the ultrasensitivity of d-IA, we were able to use a sample volume of as little as 5 µL for each assay (the dead volume was 5 µL). The limits of blank, detection, and quantification (i.e., functional sensitivity), were 0.000346, 0.001953, and 0.002280 µIU/mL, respectively, and the precision of the total coefficient of variation did not exceed 10%. The correlation between serum and plasma levels indicated good agreement. Thus, our system successfully measured TSH using d-IA with a small sample volume and equal functional sensitivity to the current third generation like ARCHITECT TSH assay, which has a functional sensitivity of 0.0038 µIU/mL.

2.
Biomedicines ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140390

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has had a significant impact on public health and the global economy. Several diagnostic tools are available for the detection of infectious diseases, with reverse transcription-polymerase chain reaction (RT-PCR) testing specifically recommended for viral RNA detection. However, this diagnostic method is costly, complex, and time-consuming. Although it does not have sufficient sensitivity, antigen detection by an immunoassay is an inexpensive and simpler alternative to RT-PCR. Here, we developed an ultrahigh sensitivity digital immunoassay (d-IA) for detecting SARS-CoV-2 nucleocapsid (N) protein as antigens using a fully automated desktop analyzer based on a digital enzyme-linked immunosorbent assay. METHODS: We developed a fully automated d-IA desktop analyzer and measured the viral N protein as an antigen in nasopharyngeal (NP) swabs from patients with coronavirus disease. We studied nasopharyngeal swabs of 159 and 88 patients who were RT-PCR-negative and RT-PCR-positive, respectively. RESULTS: The limit of detection of SARS-CoV-2 d-IA was 0.0043 pg/mL of N protein. The cutoff value was 0.029 pg/mL, with a negative RT-PCR distribution. The sensitivity of RT-PCR-positive specimens was estimated to be 94.3% (83/88). The assay time was 28 min. CONCLUSIONS: Our d-IA system, which includes a novel fully automated desktop analyzer, enabled detection of the SARS-CoV-2 N-protein with a comparable sensitivity to RT-PCR within 30 min. Thus, d-IA shows potential for SARS-CoV-2 detection across multiple diagnostic centers including small clinics, hospitals, airport quarantines, and clinical laboratories.

3.
Biomacromolecules ; 7(11): 3076-82, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17096534

ABSTRACT

(Hydroxypropyl)cellulose (HPC)/vinyl polymer networks were synthesized in film form from liquid-crystalline solutions of HPC in a mixed solvent of methacrylate monomer/methanol/water (2:1:2 in weight) containing cross-linking agents, via photopolymerization of the methacrylate monomer. Di(ethylene glycol) monomethyl ether methacrylate (DEGMEM) or 2-hydroxypropyl methacrylate (HPMA) was used as the polymerizing monomer, and tetra(ethylene glycol) diacrylate and glutaraldehyde were the cross-linkers for the monomers and HPC, respectively. The polymer composite films, HPC/PDEGMEM and HPC/PHPMA, prepared at ca. 60-70 wt % concentrations of HPC in the starting solutions, were iridescently colored due to the selective light reflection, originating from the cholesteric helical arrangement carried over successively into the network system. When the cholesteric films were immersed and swollen in water containing an inorganic neutral salt, their coloration and optical turbidity varied according to a strength of 'chaotropicity' of the impregnant ions. This ionic effect may be interpreted as essentially identical with that found formerly in the coexistent salt-sort dependence of the cholesteric pitch and lower critical solution temperature for HPC aqueous solutions. It is also demonstrated that visual appearance of the swollen networks can be changed by application of an electric potential of practical magnitude between both edges of the samples of rectangular shape.


Subject(s)
Cellulose/analogs & derivatives , Optics and Photonics , Polymers/chemistry , Cellulose/chemistry , Solutions , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...