Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Sci Rep ; 14(1): 11253, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755333

ABSTRACT

Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Neutrons , Boron Neutron Capture Therapy/methods , Lithium/chemistry , Humans , Particle Accelerators , Radiotherapy Dosage
2.
Asian J Urol ; 11(2): 286-293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680582

ABSTRACT

Objectives: Hydrogel spacer (HS) was developed to reduce rectal toxicities caused by radiotherapy, but has been reported to cause major adverse events. Our institute has attempted to introduce a hyaluronic acid (HA) as an alternative spacer. This study aimed to compare rectal doses and geometric distributions between the HS and HA implantation in prostate cancer. Methods: HS and HA were inserted in 20 and 18 patients undergoing high-dose brachytherapy, respectively. The rectum spacer volumes injected were 10 mL and 22 mL, respectively. In the treatment planning system, 13.5 Gy was administered with common catheter positions. The rectal dose indices were assessed between the spacer groups for dosimetry evaluation. Distances between the prostate and rectum and configurations of the spacers were compared. Results: The mean doses irradiated to 0.1 and 2 mL of the rectum were 10.45 Gy and 6.71 Gy for HS, and 6.73 Gy and 4.90 Gy for HA (p<0.001). The mean minimum distances between the prostate and rectum were 1.23 cm and 1.79 cm for HS and HA, respectively (p<0.05). Geometrical configuration comparisons revealed that HA has a higher ability to expand the space than HS. Conclusion: The rectal dose reduction ability of HA is significantly greater than that of HS, suggesting its potential as a new spacer.

3.
Med Phys ; 51(5): 3658-3664, 2024 May.
Article in English | MEDLINE | ID: mdl-38507277

ABSTRACT

BACKGROUND: Failure mode and effects analysis (FMEA), which is an effective tool for error prevention, has garnered considerable attention in radiotherapy. FMEA can be performed individually, by a group or committee, and online. PURPOSE: To meet the needs of FMEA for various purposes and improve its accessibility, we developed a simple, self-contained, and versatile web-based FMEA risk analysis worksheet. METHODS: We developed an FMEA worksheet using Google products, such as Google Sheets, Google Forms, and Google Apps Script. The main sheet was created in Google Sheets and contained elements necessary for performing FMEA by a single person. Automated tasks were implemented using Apps Script to facilitate multiperson FMEA; these functions were built into buttons located on the main sheet. RESULTS: The usability of the FMEA worksheet was tested in several situations. The worksheet was feasible for individual, multiperson, seminar, meeting, and online purposes. Simultaneous online editing, automated survey form creation, automatic analysis, and the ability to respond to the form from multiple devices, including mobile phones, were particularly useful for online and multiperson FMEA. Automation enabled through Google Apps Script reduced the FMEA workload. CONCLUSIONS: The FMEA worksheet is versatile and has a seamless workflow that promotes collaborative work for safety.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Japan , Humans , Health Physics , Internet , Universities , East Asian People
4.
Med Dosim ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38368182

ABSTRACT

Previous plan competitions have largely focused on dose metric assessments. However, whether the submitted plans were realistic and reasonable from a quality assurance (QA) perspective remains unclear. This study aimed to investigate the relationship between aperture-based plan complexity metrics (PCM) in volumetric modulated arc therapy (VMAT) competition plans and clinical treatment plans verified through patient-specific QA (PSQA). In addition, the association of PCMs with plan quality was examined. A head and neck (HN) plan competition was held for Japanese institutions from June 2019 to July 2019, in which 210 competition plans were submitted. Dose distribution quality was quantified based on dose-volume histogram (DVH) metrics by calculating the dose distribution plan score (DDPS). Differences in PCMs between the two VMAT treatment plan groups (HN plan competitions held in Japan and clinically accepted HN VMAT plans through PSQA) were investigated. The mean (± standard deviation) DDPS for the 98 HN competition plans was 158.5 ± 20.6 (maximum DDPS: 200). DDPS showed a weak correlation with PCMs with a maximum r of 0.45 for monitor unit (MU); its correlation with some PCMs was "very weak." Significant differences were found in some PCMs between plans with the highest 20% DDPSs and the remaining plans. The clinical VMAT and competition plans revealed similar distributions for some PCMs. Deviations in PCMs for the two groups were comparable, indicating considerable variability among planners regarding planning skills. The plan complexity for HN VMAT competition plans increased for high-quality plans, as shown by the dose distribution. Direct comparison of PCMs between competition plans and clinically accepted plans showed that the submitted HN VMAT competition plans were realistic and reasonable from the QA perspective. This evaluation may provide a set of criteria for evaluating plan quality in plan competitions.

5.
Brachytherapy ; 23(1): 45-51, 2024.
Article in English | MEDLINE | ID: mdl-38040606

ABSTRACT

BACKGROUND: Despite its efficacy, if adherence to dose constraints for surrounding normal tissues proves unattainable, the risk of late radiation-related adverse events after primary radiotherapy involving brachytherapy remains a noteworthy concern. Some studies suggest that similar to prostate radiotherapy, spacers may potentially reduce doses to surrounding healthy rectal or bladder tissues. However, guidance on spacer injections for gynecologic brachytherapy is scarce, and the optimal anatomical location for spacer placement remains undefined. We discuss maximizing the effects of spacers from an anatomical perspective. FINDINGS: As vesicovaginal and rectovaginal septa form part of the endopelvic fascia and are not uniform tissues, spacer injection resistance varies. In pelvic organ prolapse surgery, saline is injected into the anterior and posterior vaginal walls as a spacer, and the vagina, vesicovaginal septum, and bladder can be fluidly dissected. Relatively firm vesicovaginal septum tissue is used as a reconstructive organ, whereas rectovaginal septum tissue is less dense. Cervical cancer is invasive, involving surrounding fascia and ligaments. Ideally, the vesicovaginal and rectovaginal septa should be resected in radical hysterectomy. Here, spacer adaptation and the technical details of injection are described. When using ultrasound guidance for spacer injection, the target site should be adequately magnified, and the spacer ideally injected into the incision layer during radical hysterectomy. Finally, posthysterectomy, the intestinal tract may adhere to the vaginal cuffs. Therefore, artificial ascites may be useful; however, the spread depends on perioperative manipulation. CONCLUSIONS: Anatomical and surgical viewpoints are advantageous for safe, therapeutic, and replicable spacer injection administration.


Subject(s)
Brachytherapy , Male , Humans , Female , Brachytherapy/methods , Rectum , Vagina , Injections , Pelvis
6.
Front Oncol ; 13: 1272507, 2023.
Article in English | MEDLINE | ID: mdl-37901311

ABSTRACT

This study reports the first patient treatment for cutaneous malignant melanoma using a linear accelerator-based boron neutron capture therapy (BNCT) system. A single-center open-label phase I clinical trial had been conducted using the system since November 2019. A patient with a localized node-negative acral malignant melanoma and the largest diameter of the tumor ≤ 15 cm who refused primary surgery and chemotherapy was enrolled. After administering boronophenylalanine (BPA), a single treatment of BNCT with the maximum dose of 18 Gy-Eq delivered to the skin was performed. The safety and efficacy of the accelerator-based BNCT system for treating localized cutaneous malignant melanoma were evaluated. The first patient with cutaneous malignant melanoma in situ on the second finger of the left hand did not develop dose-limiting toxicity in the clinical trial. After BNCT, the treatment efficacy was gradually observed, and the patient achieved PR within 6 months and CR within 12 months. Moreover, during the follow-up period of 12 months after BNCT, the patient did not exhibit a recurrence without any treatment-related grade 2 or higher adverse events. Although grade 1 adverse events of dermatitis, dry skin, skin hyperpigmentation, edema, nausea, and aching pain were noted in the patient, those adverse events were relieved without any treatment. This case report shows that the accelerator-based BNCT may become a promising treatment modality for cutaneous malignant melanoma. We expect further clinical trials to reveal the efficacy and safety of the accelerator-based BNCT for cutaneous malignant melanoma.

7.
J Radiat Res ; 64(6): 967-972, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37816679

ABSTRACT

The uterus is known as one of the moving organs. We evaluated the movement of the uterus during irradiation and the effects of changes in the surrounding organs using a magnetic resonance (MR)-guided radiotherapy system. Seven patients with cervical cancer underwent pre- and posttreatment MR imaging to assess changes in the positioning of the uterus and cervix as well as the alterations in bladder and rectal volume. The study revealed that the movements of the uterus were greater than that of the cervix and showed a tendency to correlate with the bladder rather than the rectum. We also examined whether intrafractional motion could lead to insufficient dose coverage of the clinical target volume (CTV), specifically focusing on the D98% of the CTV in the uterine body and cervix. The impact of intrafractional motion on the D98% varied among patients, with one out of the seven patients experiencing an average dosimetric change of -2.6 Gy in the uterus, although larger planning target volume margins of 1.5 cm were applied, therefore, indicating the need for individualized optimal margins in each case. Online adaptive radiotherapy offers the advantage of modifying the treatment plan when irradiating moving organs, such as the uterus. However, it should be noted that this approach may result in longer overall treatment times compared with the traditional methods. Therefore, we must carefully consider the influence of intrafractional organ motions when opting for such a treatment.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Cervix Uteri/pathology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Uterus , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Radiotherapy, Image-Guided/methods , Motion , Radiotherapy Dosage
8.
J Dermatol Sci ; 112(1): 6-14, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37640566

ABSTRACT

BACKGROUND: Bullous pemphigoid (BP) is an autoimmune bullous disease in which abundant eosinophils accumulate in the blisters. Galectin-10 abounds in the cytoplasm of eosinophils and is released as a result of eosinophil extracellular trap cell death (EETosis). OBJECTIVE: To identify EETosis and the pathological roles of galectin-10 in BP. METHODS: EETosis and galectin-10 in BP blisters were confirmed by immunofluorescence and transmission electron microscopy. The concentrations of galectin-10 in serum and blister fluid from BP patients were studied by ELISA. The matrix metalloproteinase (MMP) expression in BP blisters was immunohistochemically compared to that in healthy controls. As an in vitro assay, normal human epidermal keratinocytes (NHEKs) and normal human dermal fibroblasts (NHDFs) were stimulated with galectin-10, followed by MMP expression measurement by real-time PCR and ELISA. The signaling pathways activated by galectin-10 were studied using Western blotting and confirmed by inhibition assays. RESULTS: Galectin-10-containing eosinophil infiltration and the extracellular deposition of major basic protein were observed in BP blisters. The ultrastructural characteristics of tissue eosinophils indicated piecemeal degranulation and EETosis. In the BP patients, the concentration of galectin-10 was higher in the blister fluid than in the serum. Several types of MMPs were upregulated in BP blisters. Galectin-10 upregulated the production of MMPs through the pathways of p38 MAPK, ERK and JNK in NHEKs and NHDFs. CONCLUSION: In the BP blisters, the eosinophils underwent EETosis and released galectin-10. Galectin-10 might contribute to BP blister formation through the production of MMPs by keratinocytes and fibroblasts.


Subject(s)
Blister , Pemphigoid, Bullous , Humans , Blister/pathology , Eosinophils , Matrix Metalloproteinases , Galectins
9.
J Radiat Res ; 64(4): 661-667, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37295954

ABSTRACT

This study aimed to quantify the relative biological effectiveness (RBE) for epithermal neutron beam contaminated with fast neutrons in the accelerator-based boron neutron capture therapy (BNCT) system coupled to a solid-state lithium target. The experiments were performed in National Cancer Center Hospital (NCCH), Tokyo, Japan. Neutron irradiation with the system provided by Cancer Intelligence Care Systems (CICS), Inc. was performed. X-ray irradiation, which was assigned as the reference group, was also performed using a medical linear accelerator (LINAC) equipped in NCCH. The four cell lines (SAS, SCCVII, U87-MG and NB1RGB) were utilized to quantify RBE value for the neutron beam. Before both of those irradiations, all cells were collected and dispensed into vials. The doses of 10% cell surviving fraction (SF) (D10) were calculated by LQ model fitting. All cell experiments were conducted in triplicate at least. Because the system provides not only neutrons, but gamma-rays, the contribution from the gamma-rays to the survival fraction were subtracted in this study. D10 value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was 4.26, 4.08, 5.81 and 2.72 Gy, respectively, while that acquired by the X-ray irradiation was 6.34, 7.21, 7.12 and 5.49 Gy, respectively. Comparison of both of the D10 values, RBE value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was calculated as 1.7, 2.2, 1.3 and 2.5, respectively, and the average RBE value was 1.9. This study investigated RBE of the epithermal neutron beam contaminated with fast neutrons in the accelerator-based BNCT system coupled to a solid-state lithium target.


Subject(s)
Boron Neutron Capture Therapy , Fast Neutrons , Lithium , Neutrons , Particle Accelerators , Relative Biological Effectiveness
10.
J Appl Clin Med Phys ; 24(5): e13915, 2023 May.
Article in English | MEDLINE | ID: mdl-36934441

ABSTRACT

PURPOSE: We measure the dose distribution of gated delivery for different target motions and estimate the gating latency in a magnetic resonance-guided radiotherapy (MRgRT) system. METHOD: The dose distribution accuracy of the gated MRgRT system (MRIdian, Viewray) was investigated using an in-house-developed phantom that was compatible with the magnetic field and gating method. This phantom contains a simulated tumor and a radiochromic film (EBT3, Ashland, Inc.). To investigate the effect of the number of beam switching and target velocity on the dose distribution, two types of target motions were applied. One is that the target was periodically moved at a constant velocity of 5 mm/s with different pause times (0, 1, 3, 10, and 20 s) between the motions. During different pause times, different numbers of beams were switched on/off. The other one is that the target was moved at velocities of 3, 5, 8, and 10 mm/s without any pause (i.e., continuous motion). The gated method was applied to these motions at MRIdian, and the dose distributions in each condition were measured using films. To investigate the relation between target motion and dose distribution in the gating method, we compared the results of the gamma analysis of the calculated and measured dose distributions. Moreover, we analytically estimated the gating latencies from the dose distributions measured using films and the gamma analysis results. RESULTS: The gamma pass rate linearly decreased with increasing beam switching and target velocity. The overall gating latencies of beam-hold and beam-on were 0.51 ± 0.17 and 0.35 ± 0.05 s, respectively. CONCLUSIONS: Film measurements highlighted the factors affecting the treatment accuracy of the gated MRgRT system. Our analytical approach, employing gamma analysis on films, can be used to estimate the overall latency of the gated MRgRT system.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Humans , Motion , Magnetic Resonance Spectroscopy , Radiotherapy Dosage , Phantoms, Imaging
11.
J Appl Clin Med Phys ; 24(4): e13865, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36573258

ABSTRACT

BACKGROUND: The setup of lung shield (LS) in total body irradiation (TBI) with the computed radiography (CR) system is a time-consuming task and has not been quantitatively evaluated. The TBI mobile imager (TBI-MI) can solve this problem through real-time monitoring. Therefore, this study aimed to perform commissioning and performance evaluation of TBI-MI to promote its use in clinical practice. METHODS: The source-axis distance in TBI treatment, TBI-MI (CNERGY TBI, Cablon Medical B.V.), and the LS position were set to 400, 450, and 358 cm, respectively. The evaluation items were as follows: accuracy of image scaling and measured displacement error of LS, image quality (linearity, signal-to-noise ratio, and modulation transfer function) using an EPID QC phantom, optimal thresholding to detect intra-fractional motion in the alert function, and the scatter radiation dose from TBI-MI. RESULTS: The accuracy of image scaling and the difference in measured displacement of the LS was <4 mm in any displacements and directions. The image quality of TBI imager was slightly inferior to the CR image but was visually acceptable in clinical practice. The signal-to-noise ratio was improved at high dose rate. The optimal thresholding value to detect a 10-mm body displacement was determined to be approximately 5.0%. The maximum fraction of scattering radiation to irradiated dose was 1.7% at patient surface. CONCLUSION: MI-TBI can quantitatively evaluate LS displacement with acceptable image quality. Furthermore, real-time monitoring with alert function to detect intrafraction patient displacement can contribute to safe TBI treatment.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Whole-Body Irradiation , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
12.
Med Phys ; 50(1): 424-439, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36412161

ABSTRACT

BACKGROUND: Boron Neutron Capture Therapy (BNCT) has recently been used in clinical oncology thanks to recent developments of accelerator-based BNCT systems. Although there are some specific processes for BNCT, they have not yet been discussed in detail. PURPOSE: The aim of this study is to provide comprehensive data on the risk of accelerator-based BNCT system to institutions planning to implement an accelerator-based BNCT system. METHODS: In this study, failure mode and effects analysis (FMEA) was performed based on a treatment process map prepared for the accelerator-based BNCT system. A multidisciplinary team consisting of a medical doctor (MD), a registered nurse (RN), two medical physicists (MP), and three radiologic technologists (RT) identified the failure modes (FMs). Occurrence (O), severity (S), and detectability (D) were scored on a scale of 10, respectively. For each failure mode (FM), risk priority number (RPN) was calculated by multiplying the values of O, S, and D, and it was then categorized as high risk, very high risk, and other. Additionally, FMs were statistically compared in terms of countermeasures, associated occupations, and whether or not they were the patient-derived. RESULTS: The identified FMs for BNCT were 165 in which 30 and 17 FMs were classified as high risk and very high risk, respectively. Additionally, 71 FMs were accelerator-based BNCT-specific FMs in which 18 and 5 FMs were classified as high risk and very high risk, respectively. The FMs for which countermeasures were "Education" or "Confirmation" were statistically significantly higher for S than the others (p = 0.019). As the number of BNCT facilities is expected to increase, staff education is even more important. Comparing patient-derived and other FMs, O tended to be higher in patient-derived FMs. This could be because the non-patient-derived FMs included events that could be controlled by software, whereas the patient-derived FMs were impossible to prevent and might also depend on the patient's condition. Alternatively, there were non-patient-derived FMs with higher D, which were difficult to detect mechanically and were classified as more than high risk. In O, significantly higher values (p = 0.096) were found for FMs from MD and RN associated with much patient intervention compared to FMs from MP and RT less patient intervention. Comparing conventional radiotherapy and accelerator-based BNCT, although there were events with comparable risk in same FMs, there were also events with different risk in same FMs. They could be related to differences in the physical characteristics of the two modalities. CONCLUSIONS: This study is the first report for conducting a risk analysis for BNCT using FMEA. Thus, this study provides comprehensive data needed for quality assurance/quality control (QA/QC) in the treatment process for facilities considering the implementation of accelerator-based BNCT in the future. Because many BNCT-specific risks were discussed, it is important to understand the characteristics of BNCT and to take adequate measures in advance. If the effects of all FMs and countermeasures are discussed by multidisciplinary team, it will be possible to take countermeasures against individual FMs from many perspectives and provide BNCT more safely and effectively.


Subject(s)
Boron Neutron Capture Therapy , Healthcare Failure Mode and Effect Analysis , Humans , Risk Assessment , Quality Control
13.
Jpn J Clin Oncol ; 53(1): 85-90, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36239100

ABSTRACT

Currently, tongue cancers are primarily managed by surgery, and interstitial brachytherapy is only recommended for a selected group of early state T1-2N0 patients who refuse surgery or are medically inoperable. In this report, a case with T3N2cM0 tongue cancer who has been effectively treated by the combination of concurrent chemoradiotherapy involving volumetric arc therapy and boost high-dose rate interstitial brachytherapy is presented. Of course, surgery remains the main treatment strategy for tongue cancer patients; however, the authors believe that if volumetric arc therapy is carefully planned to reduce the mandible dose as much as possible and high-dose rate interstitial brachytherapy with a mouthpiece that protects the mandible is combined, it is possible to treat T3N2 disease, and this can be considered for patients who want to preserve organ function.


Subject(s)
Brachytherapy , Tongue Neoplasms , Humans , Brachytherapy/adverse effects , Tongue Neoplasms/radiotherapy , Radiotherapy Dosage , Head , Chemoradiotherapy
14.
J Radiat Res ; 64(1): 186-194, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36316958

ABSTRACT

This study aimed to clarify the differences in radiotherapy dose characteristics and delivery efficiency between the supine and prone positions in patients with prostate cancer using the CyberKnife. The planning computed tomography (CT) and delineations of the prone position were obtained by rotating the supine CT images with delineations of 180° using image processing software. The optimization parameters for planning target volume (PTV) and organs at risk (OARs) were based on the prone position. The optimization parameters determined for the prone position were applied to the supine position for optimization and dose calculation. The dosimetric characteristics of the PTV and OARs, and delivery efficiency were compared between the two different patient positions. The plans in the prone position resulted in better PTV conformity index (nCI), rectum V90%, V80%, V75%, V50% and bladder V50%. A significant difference was observed in treatment time and depth along the central axis (dCAX) between the two plans. The mean treatment time per fraction and dCAX for the supine and prone positions were 20.9 ± 1.7 min versus 19.8 ± 1.3 min (P = 0.019) and 151.1 ± 33.6 mm versus 233.2 ± 8.8 mm (P < 0.001), respectively. In this study the prone position was found to improve dosimetric characteristics and delivery efficiency compared with the supine position during prostate cancer treatment with the CyberKnife.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Male , Humans , Prostate , Radiotherapy, Conformal/methods , Radiotherapy Planning, Computer-Assisted/methods , Supine Position , Radiotherapy Dosage , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Organs at Risk , Prone Position
15.
EJNMMI Phys ; 9(1): 89, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536190

ABSTRACT

BACKGROUND: 18F-FDG PET is often utilized to determine BNCT selection due to the limited availability of 18F-BPA PET, which is performed by synthesizing 18F into the boron drug used for BNCT, although the uptake mechanisms between those are different. Additionally, only a few non-spatial point parameters, such as maximum SUV (SUVmax), have reported a correlation between those in previous studies. This study aimed to investigate the spatial accumulation pattern between those PET images in tumors, which would be expected to either show higher uptake on 18F-BPA PET or be utilized in clinical, to verify whether 18F-FDG PET could be used as a selection indicator for BNCT. METHODS: A total of 27 patients with 30 lesions (11 squamous cell carcinoma, 9 melanoma, and 10 rhabdomyosarcoma) who received 18F-FDG and 18F-BPA PET within 2 weeks were enrolled in this study. The ratio of metabolic tumor volumes (MTVs) to GTV, histogram indices (skewness/kurtosis), and the correlation of total lesion activity (TLA) and non-spatial point parameters (SUVmax, SUVpeak, SUVmin, maximum tumor-to-normal tissue ratio (Tmax/N), and Tmin/N) were evaluated. After local rigid registration between those images, distances of locations at SUVmax and the center of mass with MTVs on each image and similarity indices were also assessed along its coordinate. RESULTS: In addition to SUVmax, SUVpeak, and Tmax/N, significant correlations were found in TLA. The mean distance in SUVmax was [Formula: see text] and significantly longer than that in the center of mass with MTVs. The ratio of MTVs to GTV, skewness, and kurtosis were not significantly different. However, the similarities of MTVs were considerably low. The similarity indices of Dice similarity coefficient, Jaccard coefficient, and mean distance to agreement for MTV40 were [Formula: see text], [Formula: see text], and [Formula: see text] cm, respectively. Furthermore, it was worse in MTV50. In addition, spatial accumulation patterns varied in cancer types. CONCLUSIONS: Spatial accumulation patterns in tumors showed low similarity between 18F-FDG and 18F-BPA PET, although the various non-spatial point parameters were correlated. In addition, the spatial accumulation patterns were considerably different in cancer types. Therefore, the selection for BNCT using 18F-FDG PET should be compared carefully with using 18F-FBPA PET.

16.
J Radiat Res ; 63(5): 730-740, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35946325

ABSTRACT

The first magnetic resonance (MR)-guided radiotherapy system in Japan was installed in May 2017. Implementation of online MR-guided adaptive radiotherapy (MRgART) began in February 2018. Online MRgART offers greater treatment accuracy owing to the high soft-tissue contrast in MR-images (MRI), compared to that in X-ray imaging. The Japanese Society for Magnetic Resonance in Medicine (JSMRM), Japan Society of Medical Physics (JSMP), Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), and Japanese Society for Radiation Oncology (JASTRO) jointly established the comprehensive practical guidelines for online MRgART. These guidelines propose the essential requirements for clinical implementation of online MRgART with respect to equipment, personnel, institutional environment, practice guidance, and quality assurance/quality control (QA/QC). The minimum requirements for related equipment and QA/QC tools, recommendations for safe operation of MRI system, and the implementation system are described. The accuracy of monitor chamber and detector in dose measurements should be confirmed because of the presence of magnetic field. The ionization chamber should be MR-compatible. Non-MR-compatible devices should be used in an area that is not affected by the static magnetic field (outside the five Gauss line), and their operation should be checked to ensure that they do not affect the MR image quality. Dose verification should be performed using an independent dose verification system that has been confirmed to be reliable through commissioning. This guideline proposes the checklists to ensure the safety of online MRgART. Successful clinical implementation of online MRgART requires close collaboration between physician, radiological technologist, nurse, and medical physicist.


Subject(s)
Radiation Oncology , Radiotherapy, Image-Guided , Magnetic Resonance Imaging/methods , Quality Assurance, Health Care , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods
17.
Adv Radiat Oncol ; 7(3): 100918, 2022.
Article in English | MEDLINE | ID: mdl-35647394

ABSTRACT

Purpose: Hyaluronate gel has been injected as a spacer into the rectovaginal fossa and vesicouterine fossa during brachytherapy for patients with cervical cancer at our institution. The effect of hyaluronate gel injection (HGI) on dose-volume parameters was investigated in this study. Methods and Materials: Between July 2008 to January 2020, a total of 104 patients (non-HGI group: 52 patients; HGI group: 52 patients) who underwent curative radiation therapy for cervical cancer were selected. The total doses of external beam radiation therapy and brachytherapy for high-risk clinical target volume (CTVHR) D90, bladder D2cc, and rectal D2cc were converted to the equivalent dose in 2 Gy fractions (EQD2) and were analyzed for association with HGI. Results: Median CTVHR D90 (EQD2) in the non-HGI group was 76.0 Gy (63.7-99.5 Gy), and in the HGI group it was 79.4 Gy (52.6-97.5 Gy) (P = .017). The median bladder D2cc and rectal D2cc (EQD2) were 62.9 Gy and 56.0 Gy in the non-HGI group and 63.7 Gy and 54.8 Gy in the HGI group, which had no significant difference. Conclusions: In cases with HGI, a significant CTVHR D90 dose increase was obtained with sufficient bladder and rectal doses suppression.

18.
Phys Imaging Radiat Oncol ; 23: 1-7, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35712526

ABSTRACT

Background and purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART) is a new technology of radiotherapy and requires a new quality control program in many aspects. This study aimed to gain a deeper understanding of risks in online MRgART through the application of failure mode and effect analysis (FMEA) for more enhanced and effective quality assurance (QA) programs. Materials and methods: We present an FMEA conducted by a multidisciplinary team with more than two years of experience. A process map describing the whole process of online MRgART was developed and potential failure modes were identified. High-risk failure modes and their potential causes and corrective measures were also identified. Failure modes were classified into three categories, MRgRT, online ART, and conventional RT, to investigate their features. A comparison with previous studies was also conducted to gain a general perspective. Results: In total, 153 failure modes and 49 high risks were identified. Among all failure modes, 51, 63, and 66 were related to MRgRT, online ART, and conventional RT, respectively. The hazardous processes were structure segmentation, treatment planning, and treatment beam delivery. Lists of failure modes identified in this study and previous studies were presented. Based on the results, characteristics and general aspects of the risks were discussed. Conclusion: Exploring the results of the FMEA enhanced our understanding of risk characteristics to improve QA program of online MRgART.

19.
Med Phys ; 49(7): 4804-4811, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35279854

ABSTRACT

PURPOSE: To assess the accuracy of the movement of a brachytherapy source using a high-speed camera for evaluating source position, dwell time, and transit dose. METHODS: A high-speed camera was used to record the source position of an Ir-192 source relative to a ruler within a custom positioning jig in a remote afterloading system. The analyzed frames can be used to assess dwell positions and times. Treatment plans had multiple dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in 2.5- and 5-mm step sizes. Images were acquired at a rate of 146 frames/s. Acquired images were processed to automatically track the actual source using the correlation between a template image and each frame. The brachytherapy dose calculation formalism (AAPM TG43-U1) was applied to each frame to evaluate the transit dose contribution to the total dose. RESULTS: The differences in measured source positions from the nominal for dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in treatment plans were approximately ≤1 mm. The corresponding differences in measured dwell times from the nominal values at 5 mm steps were -15, -9, -5, and 5 ms, respectively. The source velocities at 5 mm steps were approximately 393 mm/s. The dose differences at 5 mm from the source movement with and without the transit dose for these dwell times were 38%, 7%, 3%, and 2%, respectively. CONCLUSIONS: Recording a brachytherapy source using a high-speed camera allowed the evaluation of positional and dwell time accuracies as well as dosimetry assessments, such as the transit dose, based on the application of AAPM TG-43U1.


Subject(s)
Brachytherapy , Brachytherapy/methods , Radiometry , Radiotherapy Dosage
20.
Clin Transl Radiat Oncol ; 33: 128-133, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35252597

ABSTRACT

PURPOSE: This study reports the first-in-human use of a linear accelerator-based boron neutron capture therapy (BNCT) system and the first treatment of patients with scalp-angiosarcoma with accelerator-based BNCT. PATIENTS AND METHODS: A single-center open-label phase I clinical trial has been conducted using the system since November 2019. Patients with a localized node-negative scalp-angiosarcoma along with the largest diameter of the tumor ≤ 15 cm who refused primary surgery and chemotherapy were enrolled. After administration of boronophenylalanine (BPA), a single treatment of BNCT with the maximum dose delivered to the skin being 12 Gy-Eq was performed. The safety and effectiveness of accelerator-based BNCT therapy for localized scalp angiosarcoma were evaluated. RESULTS: Scalp-angiosarcoma of the two patients did not develop the dose-limiting toxicity in the clinical trial. They reached CR within half a year and did not exhibit in-field failure 20 months after BNCT without any severe treatment-related adverse events. Although a grade 3 adverse event of an asymptomatic but increased serum amylase level was noted in both patients, it relieved without any treatment. Additionally, no severe acute dermatitis was observed for both patients, which is typically seen with conventional primary radiotherapy. CONCLUSIONS: It was suggested that BNCT would be a promising treatment modality for scalp-angiosarcoma, which is difficult to treat.

SELECTION OF CITATIONS
SEARCH DETAIL
...