Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399938

ABSTRACT

Polymeric photocrosslinked networks, of particular interest in the design of materials with targeted characteristics, can be easily prepared by grafting light-sensitive moieties, such as methacrylates, on polymeric chains and, after photochemical reactions, provide materials with multiple applications via photopolymerization. In this work, photopolymerizable urethane-methacrylate sequences were attached to free hydroxyl units of cellulose acetate chains in various proportions (functionalization degree from 5 to 100%) to study the properties of the resulting macromolecules and the influence of the cellulosic material structure on the double bond conversion degree. Additionally, to manipulate the properties of the photocured systems, the methacrylate-functionalized cellulose acetate derivatives were mixed with low molecular weight dimethacrylate derivatives (containing castor oil and polypropylene glycol flexible chains), and the influence of UV-curable composition on the photopolymerization parameters being studied. The achieved data reveal that the addition of dimethacrylate comonomers augmented the polymerization rates and conversion degrees, leading to polymer networks with various microstructures.

2.
Int J Biol Macromol ; 222(Pt A): 736-749, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36174862

ABSTRACT

For environmental preservation, it is crucial to effectively remove organic waste from water. Several approaches have been put forth, but photocatalysis stands out as a quick and effective solution. In this study, some hybrid polymeric structures that were created by photopolymerizing cellulose acetate/castor oil urethane methacrylates with embedded CeO2 nanoparticles (NPs) and in situ photogenerated noble metal nanoparticles (Ag, Au, Pd) are characterized, and photochemically thoroughly evaluated. The effective modification of cellulose acetate with urethane methacrylate sequences and the degree of functionalization were first observed using 1H NMR and FTIR spectra. Additionally, scanning and transmission electron microscopy, X-ray diffraction, FT-IR and UV-visible spectroscopy were utilized to analyse the resultant nanocomposites. The homogeneous dispersion of CeO2 NPs (10-40 nm) into an organic matrix with the suitable functionalities, namely urethane and hydroxyl groups, favour the interfacial charge transfer reducing the Eg up to 2.85 eV. Moreover, noble metal nanoparticles (5-15 nm), such as Ag, Au and Pd introduction in nanocomposites, significantly lowered the Eg: 2.1 eV for CeAg samples, 1.7 eV for CeAu films and 1.5 eV for CePd films, respectively. This opens up new avenues for the creation of flexible cellulose-based photocatalysts that are active in visible light.


Subject(s)
Metal Nanoparticles , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Light , Cellulose/chemistry , Urethane
3.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35564111

ABSTRACT

Cerium oxide (CeO2) nanoparticles were synthesized with a chemical precipitation method in different experimental conditions using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as a precursor, modifying the solution pH, the reaction time, and Co atoms as dopants, in order to tune the band gap energy values of the prepared samples. The physical characteristics of the synthesized ceria nanoparticles were evaluated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis analyses and photoluminescence measurements. XRD data revealed a pure cubic fluorite structure of CeO2 NPs, the estimation of crystallite sizes by Scherrer's formula indicates the formation of crystals with dimensions between 11.24 and 21.65 nm. All samples contain nearly spherical CeO2 nanoparticles, as well as cubic, rhomboidal, triangular, or polyhedral nanoparticles that can be identified by TEM images. The optical investigation of CeO2 samples revealed that the band gap energy values are between 3.18 eV and 2.85 eV, and, after doping with Co atoms, the Eg of samples decreased to about 2.0 eV. In this study, we managed to obtain CeO2 NPs with Eg under 3.0 eV by only modifying the synthesis parameters. In addition, by doping with Co ions, the band gap energy value was lowered to 2.0 eV. This aspect leads to promising results that provide an encouraging approach for future photocatalytic investigations.

4.
Materials (Basel) ; 13(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781645

ABSTRACT

Hybrid polymeric materials, due to the unique combination of properties that can be obtained by the convenient variation of organic and inorganic components, represent an attractive alternative for many applications, especially photocatalysis. Herein, we report the preparation of nanocomposite films containing functionalized ZnO nanoparticles, as well as in situ photogenerated noble metal nanoparticles (Ag, Au, Pd), for the achieving of materials with enhanced photocatalytic activity under visible light. The flexible free-standing nanocomposite films were synthesized by photopolymerization of a monomer mixture (silane castor oil urethane dimethacrylate and polypropylene oxide urethane dimethacrylate) in the presence of a Irgacure 819 photoinitiator. The efficiency of ZnO NPs functionalization was established by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis, while the polymer composites were characterized by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy to evidence the formation, size and distribution of the nanoparticles inside the photocrosslinked matrix. To establish the photocatalytic capacity of nanocomposite films, the decomposition of various pollutants (methyl orange, phenol, metronidazole) was monitored under visible light irradiation, the best results being obtained for Au/ZnO film. Also, the advantage of immobilizing the catalysts in a polymeric support and its recycling ability without a significant decrease in photocatalytic efficiency was analysed.

5.
Materials (Basel) ; 13(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630331

ABSTRACT

One of the major issues faced when constructing various materials incorporating inorganic nanoparticles (NPs) is aggregation leading to loss of their final activity. In our work, cellulose acetate (CA) has been used to serve as matrix for the synthesis of UV-shielding and transparent films containing various amounts (1-5 wt.%) of cerium oxide (CeO2) NPs. In order to attain an improved dispersion and a better connectivity between NPs and the cellulose matrix, the surface of CeO2 NPs have been previously functionalized by the reaction with 3-aminopropyl(diethoxy)methylsilane (APDMS). The uniform dispersion of the NPs in the homogeneous thin films has been evidenced by using Transmission Electron Microscopy (TEM) and Fourier Transformation Infrared Spectroscopy (FTIR) characterization. The investigation of the optical properties for the hybrid films through UV-Vis spectroscopy revealed that the presence of CeO2 NPs in the CA matrix determined the appearance of strong UV absorption bands in the region 312-317 nm, which supports their use as efficient UV absorbers. This study has shown that UV shielding ability of the nanocomposites can be easily tuned by adjusting the numberof inorganic NPs in the CA template.

SELECTION OF CITATIONS
SEARCH DETAIL
...