Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 107: 103845, 2022 09.
Article in English | MEDLINE | ID: mdl-36068046

ABSTRACT

External gloves for anthropomorphic prosthetic hands protect the mechanisms from damage and ingress of contaminants and can be used to create a pleasing, life-like appearance. The properties of the glove material are the result of a compromise between the resistance to damage and flexibility. Silicone gloves are easier to flex and keep clean, but also more easily damaged. This paper details the use of nanoclay fillers to enhance the properties of silicone, successfully increasing strength whilst maintaining flexibility. The performance of the enhanced silicone is as robust and resistant to tear and puncture as commercial gloves, while being more flexible. This flexibility makes the incorporation of a piezo-electric pressure sensor based on the EEonyx conductive fabric, practical. A sandwich of the cloth and copper fabric creates the sensor, which decreases in resistance with increasing pressure. The sensors are characterised and production variability within the silicone are tested. Three sensors are incorporated into a glove made to fit around a Southampton Intelligent Hand. The hand adapts its grip shape and force depending on the object held. The technology is adaptable and it can be incorporated in a glove produced to fit any prosthetic hand.


Subject(s)
Hand , Silicones , Hand Strength , Mechanical Phenomena
2.
Mater Sci Eng C Mater Biol Appl ; 58: 986-91, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478395

ABSTRACT

The antimicrobial thermoplastic starch (ATPS) containing guanidine-based polymers was obtained using a twin-screw extrusion with potato starch and polyhexamethylene guanidine hydrochloride (PHGH). Furthermore, the non-leaching antimicrobial biodegradable poly(butylene adipate-co-terephthalate) (PBAT) was prepared through reactive extrusion with PBAT and ATPS in the presence of the coupling agent, 2,2'-(1,3-phenylene)-bis (2-oxazoline) (PBO). Finally, the antimicrobial PBAT films were obtained by using a blown film extrusion system. The mechanical properties of the antimicrobial PBAT films varied with the contents of ATPS and thermoplastic starch (TPS). According to the test results of shaking flask method, the prepared antimicrobial PBAT films showed excellent antimicrobial activities (antimicrobial rate >99.99%) and rapid pathogen deactivation efficiency (antimicrobial rate >99.99% even within 15s of contact time). The water washing and ring diffusion tests demonstrated that the antimicrobial film was a non-leaching product. Inspiringly, the antimicrobial PBAT films with an excellent antimicrobial activity can be obtained even at a very low dosage of PHGH (1.0 mg/g PBAT film).


Subject(s)
Anti-Infective Agents/chemistry , Polyesters/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Disk Diffusion Antimicrobial Tests , Elastic Modulus , Escherichia coli/drug effects , Microscopy, Electron, Scanning , Polyesters/pharmacology , Starch/chemistry
3.
Carbohydr Polym ; 91(2): 560-7, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23121945

ABSTRACT

In this study, polyethylene terephthalate (PET) fabric was modified by applying a hydrophilic surface finishing agent that contains nanocrystalline cellulose (NCC). To impart superior hydrophilicity, NCC was further cationically modified through quaternization by grafting glycidyl tri-methyl ammonium chloride (GTMAC). A textile binder, PrintRite595(®), was added to the finishing system. The surface finish was applied on the fabric using a rolling-drying-curing process. The modified fabric was characterized in terms of coating durability, moisture regain, and wettability. The durability of the surface finish was tested by six repeated washing steps. The surface properties of the fabric changed from hydrophobic to hydrophilic after heat treatment with the NCC-containing surface finishing agent. The results from the washing fastness, SEM, FTIR, and EDX analyses confirmed that the cationic NCC-containing textile surface finish showed superior adhesion onto the cationic dyeable (anionic) PET surface over the un-modified NCC. Furthermore, the cationic textile surface finish was capable of withstanding multiple washing cycles.

4.
Carbohydr Polym ; 89(1): 163-70, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-24750619

ABSTRACT

In this study, nanocrystalline cellulose (NCC) resulting from sulfuric acid hydrolysis of wood cellulose fiber, was rendered cationic by grafting with glycidyltrimethylammonium chloride (GTMAC). An optimization of the reaction parameters, such as water content, reactant mole ratio, and reaction media was performed. The presence of cationic GTMAC on the surface of NCC was confirmed by Fourier Transform Infrared Spectroscopy (FTIR). The cationically modified NCC was characterized by surface charge density, degree of substitution, ζ potential, and particle size. It was found that the cationic surface charge density of NCC can be increased by controlling the water content of the reaction system. Surface cationization of NCC led to an increase in the surface charge density over the un-modified NCC. The cationically modified NCC was well dispersed and stable in aqueous media due to enhanced cationic surface charge density. Transmission electron microscopy (TEM) images showed the improvement in state of dispersion of cationically modified NCC over the un-modified NCC. The optimum water content was found to be 36 wt% for aqueous based media and 0.5 water to DMSO volume ratio for aqueous-organic solvent reaction media. The increased surface charge density of NCC also delayed the onset of gelation in aqueous system.


Subject(s)
Cellulose/chemistry , Epoxy Compounds/chemistry , Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Hydrolysis , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared , Sulfuric Acids/chemistry , Surface Properties , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...