Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(12): 1673-1681, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116446

ABSTRACT

SHP2 has emerged as an important target for oncology small-molecule drug discovery. As a nonreceptor tyrosine phosphatase within the MAPK pathway, it has been shown to control cell growth, differentiation, and oncogenic transformation. We used structure-based design to find a novel class of potent and orally bioavailable SHP2 inhibitors. Our efforts led to the discovery of the 5-azaquinoxaline as a new core for developing this class of compounds. Optimization of the potency and properties of this scaffold generated compound 30, that exhibited potent in vitro SHP2 inhibition and showed excellent in vivo efficacy and pharmacokinetic profile.

2.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32250617

ABSTRACT

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem ; 28(1): 115232, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31818630

ABSTRACT

Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high levels of glucose. Flux through GK is also responsible for reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can activate GK could provide a therapeutic benefit. Herein we report the further structure activity studies of a novel series of glucokinase activators (GKA). These studies led to the identification of pyridine 72 as a potent GKA that lowered post-prandial glucose in normal C57BL/6J mice, and after 14d dosing in ob/ob mice.


Subject(s)
Enzyme Activators/chemistry , Glucokinase/chemistry , Hypoglycemic Agents/chemistry , Animals , Binding Sites , Blood Glucose/analysis , Crystallography, X-Ray , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Drug Design , Drug Evaluation, Preclinical , Enzyme Activators/metabolism , Enzyme Activators/therapeutic use , Glucokinase/metabolism , Glucose Tolerance Test , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/therapeutic use , Kinetics , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/metabolism
4.
ACS Med Chem Lett ; 9(12): 1230-1234, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613331

ABSTRACT

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutations are commonly associated with poor prognosis and resistance to standard treatment. The ability to effectively target and block the function of mutated KRAS has remained elusive despite decades of research. Recent findings have demonstrated that directly targeting KRAS-G12C with electrophilic small molecules that covalently modify the mutated codon 12 cysteine is feasible. We have discovered a series of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. The PK/PD and efficacy of compound 13 will be highlighted.

5.
ACS Med Chem Lett ; 5(12): 1284-9, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516785

ABSTRACT

Glucokinase (GK) activators represent a class of type 2 diabetes therapeutics actively pursued due to the central role that GK plays in regulating glucose homeostasis. Herein we report a novel C5-alkyl-2-methylurea-substituted pyridine series of GK activators derived from our previously reported thiazolylamino pyridine series. Our efforts in optimizing potency, enzyme kinetic properties, and metabolic stability led to the identification of compound 26 (AM-9514). This analogue showed a favorable combination of in vitro potency, enzyme kinetic properties, acceptable pharmacokinetic profiles in preclinical species, and robust efficacy in a rodent PD model.

6.
Bioorg Med Chem Lett ; 24(12): 2635-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24813737

ABSTRACT

The discovery and optimization of a series of tetrahydropyridopyrimidine based extracellular signal-regulated kinase (Erks) inhibitors discovered via HTS and structure based drug design is reported. The compounds demonstrate potent and selective inhibition of Erk2 and knockdown of phospho-RSK levels in HepG2 cells and tumor xenografts.


Subject(s)
Drug Discovery , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Cell Line, Tumor , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyrimidines/chemistry , Small Molecule Libraries , Structure-Activity Relationship
7.
PLoS One ; 9(2): e88431, 2014.
Article in English | MEDLINE | ID: mdl-24533087

ABSTRACT

Glucokinase (GK) is a hexokinase isozyme that catalyzes the phosphorylation of glucose to glucose-6-phosphate. Glucokinase activators are being investigated as potential diabetes therapies because of their effects on hepatic glucose output and/or insulin secretion. Here, we have examined the efficacy and mechanisms of action of a novel glucokinase activator, GKA23. In vitro, GKA23 increased the affinity of rat and mouse glucokinase for glucose, and increased glucose uptake in primary rat hepatocytes. In vivo, GKA23 treatment improved glucose homeostasis in rats by enhancing beta cell insulin secretion and suppressing hepatic glucose production. Sub-chronic GKA23 treatment of mice fed a high-fat diet resulted in improved glucose homeostasis and lipid profile.


Subject(s)
Aminopyridines/chemistry , Enzyme Activators/chemistry , Glucokinase/metabolism , Thiadiazoles/chemistry , Animals , Area Under Curve , Blood Glucose/metabolism , Catalysis , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Glucose Tolerance Test , Hepatocytes/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Kinetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Phosphorylation , Rats , Rats, Sprague-Dawley
8.
J Med Chem ; 56(19): 7669-78, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24015910

ABSTRACT

Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high glucose concentrations. Glucose flux through GK also contributes to reducing hepatic glucose output. Because many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, compounds that can activate GK may serve as effective treatments for type 2 diabetes. Herein we report the identification and initial optimization of a novel series of allosteric glucokinase activators (GKAs). We discovered an initial thiazolylamino pyridine-based hit that was optimized using a structure-based design strategy and identified 26 as an early lead. Compound 26 demonstrated a good balance of in vitro potency and enzyme kinetic parameters and demonstrated blood glucose reductions in oral glucose tolerance tests in both C57BL/6J mice and high-fat fed Zucker diabetic fatty rats.


Subject(s)
Aminopyridines/chemical synthesis , Enzyme Activators/chemical synthesis , Glucokinase/metabolism , Hypoglycemic Agents/chemical synthesis , Thiazoles/chemical synthesis , Allosteric Regulation , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Glucose Tolerance Test , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Mice, Inbred C57BL , Rats , Rats, Zucker , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Young Adult
9.
Oncol Res ; 19(7): 349-63, 2011.
Article in English | MEDLINE | ID: mdl-21936404

ABSTRACT

Chk1 is a serine/threonine kinase that plays several important roles in the cellular response to genotoxic stress. Since many current standard-of-care therapies for human cancer directly damage DNA or inhibit DNA synthesis, there is interest in using small molecule inhibitors of Chk1 to potentiate their clinical activity. Additionally, Chk1 is known to be critically involved in cell cycle progression of unperturbed cells. Therefore, it is plausible that treatment with a Chkl inhibitor alone could also be an efficacious cancer therapy. Here we report that Chk1-A, a potent and highly selective small molecule inhibitor of Chk1, is antiproliferative as a single agent in a variety of human cancer cell lines in vitro. The inhibition of proliferation is associated with collapse of DNA replication and apoptosis. Rapid decreases in inhibitory phosphorylation of CDKs and a concomitant increase in CDK kinase activity and chromatin loading of Cdc45 suggest that the antiproliferative and proapoptotic activity of Chk1-A is at least in part due to deregulation of DNA synthesis. We extend these in vitro studies by demonstrating that Chk1-A inhibits the growth of tumor xenografts in vivo in a treatment regimen that is well tolerated. Together, these results suggest that single-agent inhibition of Chk1 may be an effective treatment strategy for selected human malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/physiology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 1 , Female , Humans , Mice , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...