Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 51(6): 1086-1093, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36373594

ABSTRACT

Several families of parasitic Hymenoptera have evolved traits that allow them to exploit cockroach oothecae. Cockroaches may bury and conceal their oothecae to prevent parasitoid attack. However, these protective measures require additional investment by females. We hypothesized that gravid cockroaches would reduce parental care in the absence of oothecal parasitoids and increase care when parasitoids were detected. Behavior bioassays consisted of glass jars containing a gravid American cockroach, Periplaneta americana (L.) (Blattodea: Blattidae), expanded polystyrene (EPS), and a dog food pellet. A fruit fly (Drosophila melanogaster Meigen) (Diptera: Drosophilidae) or parasitoid Aprostocetus hagenowii (Ratzburg) (Hymenoptera: Eulophidae) was added for the fly and parasitoid treatments, respectively. There was no significant difference among treatments in the proportion of oothecae buried or in mean cover of oothecae with EPS particles. Cover had no effect on parasitism success or failure. Electroantennogram (EAG) assays using P. americana antennae were also conducted. The EAG responses to dead parasitoid stimuli (0.111-0.124 mV) were significantly (p < 0.05) greater than the negative control, but responses to living parasitoid stimuli (0.075-0.089 mV) were nonsignificant. These findings suggest that burial and concealment of oothecae is a general defensive behavior employed regardless of the presence or absence of a natural enemy. The results also indicate that gravid P. americana are unable to detect, and therefore, differentiate A. hagenowii from other insects and that A. hagenowii can successfully locate and parasitize oothecae completely concealed with EPS particles.


Subject(s)
Cockroaches , Coleoptera , Hymenoptera , Periplaneta , Female , Animals , Dogs , Periplaneta/parasitology , Periplaneta/physiology , Drosophila melanogaster , Host-Parasite Interactions
2.
BMC Zool ; 7(1): 5, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-37170318

ABSTRACT

BACKGROUND: Aluminum is the third most prevalent element in the earth's crust. In most conditions, it is tightly bound to form inaccessible compounds, however in low soil pH, the ionized form of aluminum can be taken up by plant roots and distributed throughout the plant tissue. Following this uptake, nectar and pollen concentrations in low soil pH regions can reach nearly 300 mg/kg. Inhibition of acetylcholinesterase (AChE) has been demonstrated following aluminum exposure in mammal and aquatic invertebrate species. In honey bees, behaviors consistent with AChE inhibition have been previously recorded; however, the physiological mechanism has not been tested, nor has aversive conditioning. RESULTS: This article presents results of ingested aqueous aluminum chloride exposure on AChE as well as acute exposure effects on aversive conditioning in an Apis mellifera ligustica hive. Contrary to previous findings, AChE activity significantly increased as compared to controls following exposure to 300 mg/L Al3+. In aversive conditioning studies, using an automated shuttlebox, there were time and dose-dependent effects on learning and reduced movement following 75 and 300 mg/L exposures. CONCLUSIONS: These findings, in comparison to previous studies, suggest that aluminum toxicity in honey bees may depend on exposure period, subspecies, and study metrics. Further studies are encouraged at the moderate-high exposure concentrations as there may be multiple variables that affect toxicity which should be teased apart further.

SELECTION OF CITATIONS
SEARCH DETAIL
...