Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38132804

ABSTRACT

Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.

3.
Methods Mol Biol ; 2588: 451-472, 2023.
Article in English | MEDLINE | ID: mdl-36418704

ABSTRACT

Following the discovery of neutrophil extracellular traps (NETs) in 2004 by Brinkmann and colleagues, there has been extensive research into the role of NETs in a number of inflammatory diseases, including periodontitis. This chapter describes the current methods for the isolation of peripheral blood neutrophils as well as of oral neutrophils for subsequent NET experiments, including approaches to quantify and visualize NET production, the ability of NETs to entrap and kill bacteria, and the removal of NETs by nuclease-containing plasma.


Subject(s)
Extracellular Traps , Neutrophils , Endonucleases , Plasma
4.
Front Microbiol ; 12: 647373, 2021.
Article in English | MEDLINE | ID: mdl-34177829

ABSTRACT

A Ciboria sp. strain (Phylum Ascomycota) was isolated from hydrocarbon-polluted soil of an abandoned oil refinery in Italy. The strain was able to utilize diesel oil as a sole carbon source for growth. Laboratory-scale experiments were designed to evaluate the use of this fungal strain for treatment of the polluted soil. The concentration of total petroleum hydrocarbons (TPH) in the soil was 8,538 mg/kg. Mesocosms containing the contaminated soil were inoculated with the fungal strain at 1 or 7%, on a fresh weight base ratio. After 90 days of incubation, the depletion of TPH contamination was of 78% with the 1% inoculant, and 99% with the 7% inoculant. 16S rDNA and ITS metabarcoding of the bacterial and fungal communities was performed in order to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction indicated Arthrobacter, Dietzia, Brachybacerium, Brevibacterium, Gordonia, Leucobacter, Lysobacter, and Agrobacterium spp. as generalist saprophytes, essential for the onset of hydrocarbonoclastic specialist bacterial species, identified as Streptomyces, Nocardoides, Pseudonocardia, Solirubrobacter, Parvibaculum, Rhodanobacter, Luteiomonas, Planomicrobium, and Bacillus spp., involved in the TPH depletion. The fungal metabolism accelerated the onset of specialist over generalist bacteria. The capacity of the Ciboria sp. to deplete TPH in the soil in treatment was also ascertained.

5.
Blood Cancer J ; 10(11): 114, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149136

ABSTRACT

Multiple myeloma (MM) is associated with increased risk of infection, but little is known regarding antibody levels against specific bacteria. We assessed levels of polyclonal immunoglobulin and antibacterial antibodies in patients recruited to the TEAMM trial, a randomised trial of antibiotic prophylaxis at the start of anti-myeloma treatment. Polyclonal IgG, IgA and IgM levels were below the reference range in 71%, 83% and 90% of 838 MM patients at diagnosis. Anti-vaccine targeted tetanus toxoid antibodies were protective in 95% of 193 healthy controls but only 41% of myeloma patients. In healthy controls, protective antibodies against 6/12 pneumococcal serotypes, haemophilus and meningococcus A were present in 67%, 41% and 56% compared to just 15%, 21% and 17% of myeloma patients. By 1 year, myeloma patients IgG levels had recovered for 57% of patients whilst the proportion with protective levels of IgG against thymus-dependent protein antigen tetanus toxoid had changed little. In contrast the proportions of patients with protective levels against thymus independent polysaccharide antigens pneumococcus, haemophilus and meningococcus had fallen from 15 to 7%, 21 to 0% and 17 to 11%. Findings highlight the need for strategies to protect patients against bacterial infections during therapy and vaccination programmes during remission.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antibodies, Bacterial/administration & dosage , Bacterial Infections/drug therapy , Multiple Myeloma/drug therapy , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged
6.
Environ Sci Pollut Res Int ; 27(29): 36203-36214, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32557076

ABSTRACT

A new Pseudomonas putida strain (AQ8) was isolated from a decommissioned oil refinery's soil in Italy and characterized for its ability to degrade BTEX. The draft genome of the new strain was sequenced and annotated for genes that encode enzymes putatively involved in BTEX degradation and quorum sensing. The strain was transformed with a plasmid expressing lactonase, which cleaves the autoinducer quorum sensing signal molecule, the acyl-homoserine lactone, to obtain a quorum sensing minus strain. P. putida AQ8 depleted the 40% on average of all the components of the initial BTEX concentration in 36 h. The quorum sensing minus strain, in the same time interval, depleted only the 10% of the initial BTEX concentration. The role of quorum sensing in regulating the expression of the annotated benzene/toluene dioxygenase gene (benzA) and biphenyl/toluene/benzene dioxygenase (bphA) genes, which are involved in BTEX degradation, was studied by quantitative RT-real-time quantitative (q)PCR analysis. The qPCR data showed decreased levels of expression of the benzA and bphA genes in the quorum sensing minus strain. Our results showed, for the first time, quorum sensing modulation of the level of transcription of dioxygenase genes in the upper BTEX oxidation pathway.


Subject(s)
Pseudomonas putida , Benzene , Italy , Oxidative Stress , Quorum Sensing
7.
N Biotechnol ; 50: 27-36, 2019 May 25.
Article in English | MEDLINE | ID: mdl-30654133

ABSTRACT

Four new Ascomycete fungi capable of degrading diesel oil were isolated from sediments of a river estuary mainly contaminated by shipyard fuels or diesel oil. The isolates were identified as species of Lambertella, Penicillium, Clonostachys, and Mucor. The fungal candidates degraded and adsorbed the diesel oil in suspension cultures. The Lambertella sp. isolate displayed the highest percentages of oxidation of diesel oil and was characterised by the capacity to utilise the latter as a sole carbon source. This isolate showed extracellular laccase and Mn-peroxidase activities in the presence of diesel oil. It was tested for capacity to accelerate the process of decontamination of total petroleum hydrocarbon contaminated sediments, co-composted with lignocellulosic residues and was able to promote the degradation of 47.6% of the TPH contamination (54,074 ± 321 mg TPH/Kg of sediment) after two months of incubation. The response of the bacterial community during the degradation process was analysed by 16S rRNA gene meta-barcoding.


Subject(s)
Ascomycota/metabolism , Geologic Sediments/chemistry , Hydrocarbons/metabolism , Petroleum/metabolism , Ascomycota/isolation & purification , Composting , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
8.
Front Immunol ; 9: 337, 2018.
Article in English | MEDLINE | ID: mdl-29556228

ABSTRACT

Neutrophil extracellular traps (NETs) are DNA-based antimicrobial web-like structures whose release is predominantly mediated by reactive oxygen species (ROS); their purpose is to combat infections. However, unbalanced NET production and clearance is involved in tissue injury, circulation of auto-antibodies and development of several chronic diseases. Currently, there is lack of agreement regarding the high-throughput methods available for NET investigation. This study, therefore, aimed to develop and optimize a high-content analysis (HCA) approach, which can be applied for the assay of NET production and for the screening of compounds involved in the modulation of NET release. A suitable paraformaldehyde fixation protocol was established to enable HCA of neutrophils and NETs. Bespoke and in-built bioinformatics algorithms were validated by comparison with standard low-throughput approaches for application in HCA of NETs. Subsequently, the optimized protocol was applied to high-content screening (HCS) of a pharmaceutically derived compound library to identify modulators of NETosis. Of 56 compounds assessed, 8 were identified from HCS for further characterization of their effects on NET formation as being either inducers, inhibitors or biphasic modulators. The effects of these compounds on naïve neutrophils were evaluated by using specific assays for the induction of ROS and NET production, while their modulatory activity was validated in phorbol 12-myristate 13-acetate-stimulated neutrophils. Results indicated the involvement of glutathione reductase, Src family kinases, molecular-target-of-Rapamycin, and mitogen-activated-protein-kinase pathways in NET release. The compounds and pathways identified may provide targets for novel therapeutic approaches for treating NET-associated pathologies.


Subject(s)
Extracellular Traps/immunology , MAP Kinase Signaling System/drug effects , Neutrophils/immunology , Pharmaceutical Preparations , Female , Humans , MAP Kinase Signaling System/immunology , Male , Reactive Oxygen Species/immunology , src-Family Kinases/immunology
9.
J Endod ; 43(9S): S87-S94, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28844308

ABSTRACT

The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.


Subject(s)
Bacterial Infections/immunology , Dental Pulp/physiology , Dentin/physiology , Extracellular Traps/physiology , Regeneration , Humans , Inflammation/immunology
10.
Methods Mol Biol ; 1537: 481-497, 2017.
Article in English | MEDLINE | ID: mdl-27924613

ABSTRACT

Following the discovery of neutrophil extracellular traps (NETs) in 2004 by Brinkmann and colleagues, there has been extensive research into the role of NETs in a number of inflammatory diseases, including periodontitis. This chapter describes the current methods for the isolation of peripheral blood neutrophils for subsequent NET experiments, including approaches to quantify and visualize NET production, the ability of NETs to entrap and kill bacteria, and the removal of NETs by nuclease-containing plasma.


Subject(s)
Extracellular Traps/metabolism , Neutrophils/metabolism , Biomarkers , Cathepsin G/metabolism , Cytotoxicity, Immunologic , Extracellular Traps/immunology , Extracellular Traps/microbiology , Humans , Leukocyte Elastase/metabolism , Microbial Viability/immunology , Microscopy, Fluorescence , Neutrophil Activation/immunology , Neutrophils/immunology , Neutrophils/microbiology , Neutrophils/ultrastructure , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...