Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Bioorg Med Chem Lett ; 27(5): 1124-1128, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28185720

ABSTRACT

The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.


Subject(s)
Acetamides/pharmacology , Receptors, G-Protein-Coupled/agonists , Acetamides/pharmacokinetics , Animals , Half-Life , Humans , Quantum Dots , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26898814

ABSTRACT

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Subject(s)
Carbolines/chemistry , Carbolines/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Carbolines/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Rats , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 6(8): 936-41, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26288697

ABSTRACT

We report herein the design and synthesis of a series of potent and selective GPR119 agonists. Our objective was to develop a GPR119 agonist with properties that were suitable for fixed-dose combination with a DPP4 inhibitor. Starting from a phenoxy analogue (1), medicinal chemistry efforts directed toward reducing half-life and increasing solubility led to the synthesis of a series of benzyloxy analogues. Compound 28 was chosen for further profiling because of its favorable physicochemical properties and excellent GPR119 potency across species. This compound exhibited a clean off-target profile in counterscreens and good in vivo efficacy in mouse oGTT.

4.
Bioorg Med Chem Lett ; 25(19): 4143-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26303893

ABSTRACT

A novel, potent series of glucagon receptor antagonists (GRAs) was discovered. These indazole- and indole-based compounds were designed on an earlier pyrazole-based GRA lead MK-0893. Structure-activity relationship (SAR) studies were focused on the C3 and C6 positions of the indazole core, as well as the benzylic position on the N-1 of indazole. Multiple potent GRAs were identified with excellent in vitro profiles and good pharmacokinetics in rat. Among them, GRA 16d was found to be orally active in blunting glucagon induced glucose excursion in an acute glucagon challenge model in glucagon receptor humanized (hGCGR) mice at 1, 3 and 10mg/kg (mpk), and significantly lowered acute glucose levels in hGCGR ob/ob mice at 3 mpk dose.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Humans , Mice , Mice, Obese , Molecular Structure , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 25(17): 3520-5, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26199120

ABSTRACT

We report SAR studies on a novel non-peptidic somatostatin receptor 3 (SSTR3) agonist lead series derived from (4-phenyl-1H-imidazol-2-yl)methanamine. This effort led to the discovery of a highly potent low molecular weight SSTR3 agonist 5c (EC50=5.2 nM, MW=359). The results from molecular overlays of 5c onto the L-129 structure indicate good alignment, and two main differences of the proposed overlays of the antagonist MK-4256 onto the conformation of 5c lead to inversion of antagonism to agonism.


Subject(s)
Methylamines/chemistry , Receptors, Somatostatin/chemistry , Drug Discovery , Humans , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 6(5): 513-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005524

ABSTRACT

The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).

7.
ACS Med Chem Lett ; 5(7): 748-53, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050159

ABSTRACT

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.

8.
ACS Med Chem Lett ; 5(6): 690-5, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944745

ABSTRACT

A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents.

9.
J Med Chem ; 56(14): 5940-8, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23808489

ABSTRACT

Hydroisoindoline 2 has been previously identified as a potent, brain-penetrant NK1 receptor antagonist with a long duration of action and improved profile of CYP3A4 inhibition and induction compared to aprepitant. However, compound 2 is predicted, based on data in preclinical species, to have a human half-life longer than 40 h and likely to have drug-drug-interactions (DDI), as 2 is a victim of CYP3A4 inhibition caused by its exclusive clearance pathway via CYP3A4 oxidation in humans. We now report 2-[(3aR,4R,5S,7aS)-5-{(1S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethoxy}-4-(2-methylphenyl)octahydro-2H-isoindol-2-yl]-1,3-oxazol-4(5H)-one (3) as a next generation NK1 antagonist that possesses an additional clearance pathway through glucuronidation in addition to that via CYP3A4 oxidation. Compound 3 has a much lower propensity for drug-drug interactions and a reduced estimated human half-life consistent with once daily dosing. In preclinical species, compound 3 has demonstrated potency, brain penetration, and a safety profile similar to 2, as well as excellent pharmacokinetics.


Subject(s)
Isoindoles/chemical synthesis , Neurokinin-1 Receptor Antagonists/chemical synthesis , Oxazoles/chemical synthesis , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Glucuronides/metabolism , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Metabolic Clearance Rate , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Neurokinin-1 Receptor Antagonists/pharmacology , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Peptide Fragments/pharmacology , Substance P/analogs & derivatives , Substance P/pharmacology
10.
Biopolymers ; 98(5): 443-50, 2012.
Article in English | MEDLINE | ID: mdl-23203689

ABSTRACT

The ratio of GLP-1/glucagon receptor (GLP1R/GCGR) co-agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet-induced obese (DIO) mice chronically treated with GLP1R/GCGR co-agonist peptides differing in their relative receptor agonism. Using glucagon-based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP-1 sequences, C-terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N-terminal dipeptide. In addition to α-amino-isobutyric acid (Aib) substitution at position two, we show that α,α'-dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site-specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co-agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co-agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co-agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.


Subject(s)
Glucagon-Like Peptide 1/agonists , Receptors, Glucagon/agonists , Weight Loss , Amino Acid Sequence , Amino Acid Substitution , Aminoisobutyric Acids/chemistry , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/standards , Blood Glucose/chemistry , Blood Glucose/drug effects , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/chemistry , Glucagon-Like Peptide 1/chemical synthesis , Glucagon-Like Peptide 1/pharmacokinetics , Glucagon-Like Peptide-1 Receptor , Glucose/adverse effects , Glucose/chemistry , Glucose/pharmacology , Glycogenolysis , Histidine/chemistry , Humans , Hyperglycemia/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Molecular Sequence Data , Proteolysis , Receptors, Glucagon/chemistry , Structure-Activity Relationship , Transfection
11.
Am J Physiol Endocrinol Metab ; 303(2): E265-71, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22621866

ABSTRACT

Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are peptide hormones secreted postprandially from the gut that stimulate insulin secretion in a glucose-dependent manner. OXM activates both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). It has been suggested that OXM acutely modulates glucose metabolism solely through GLP1R agonism. Because OXM activates the GLP1R with lower affinity than GLP-1, we generated a peptide analog (Q→E, OXMQ3E) that does not exhibit glucagon receptor agonist activity but retains the same affinity as OXM for GLP1R. We compared the effects of OXM and OXMQ3E in a glucose tolerance test and, to better characterize the effect on glucose metabolism, we performed controlled infusions of OXM or OXMQ3E during a hyperglycemic clamp performed in wild-type, Glp1r(-/-), and Gcgr(-/-) mice. Our findings show that OXM, but not OXMQ3E, activates the GCGR in vivo. Second, OXM and OXMQ3E improve glucose tolerance following an acute glucose challenge and during a hyperglycemic clamp in mice. Finally, OXM infusion during a glucose clamp reduces the glucose infusion rate (GIR) despite a simultaneous increase in insulin levels in Glp1r(-/-) mice, whereas OXM and OXMQ3E increase GIR to a similar extent in Gcgr(-/-) mice. In conclusion, activation of the GCGR seems to partially attenuate the acute beneficial effects on glucose and contributes to the insulinotropic action of oxyntomodulin.


Subject(s)
Glucagon-Like Peptide 1/pharmacology , Glucose/metabolism , Oxyntomodulin/pharmacology , Animals , Blood Glucose/drug effects , Glucagon-Like Peptide-1 Receptor , Glucose Clamp Technique , Glucose Tolerance Test , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism
12.
Obesity (Silver Spring) ; 20(8): 1566-71, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22421924

ABSTRACT

Oxyntomodulin (OXM) is a peptide secreted postprandially from the L-cells of the gut that has a weak affinity for both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR). Peripheral administration of OXM in humans and rodents causes weight loss reducing food intake and increasing energy expenditure. It has been suggested that OXM modulates energy intake solely through GLP1R agonism. Because glucagon decreases food intake in rodents and humans, we examined whether activation of the GCGR is involved in the body weight-lowering effects of OXM. We identified an equipotent GLP1R-selective peptide agonist that differs from OXM by only one residue (Q3→E, OXMQ3E), but has no significant GCGR agonist activity in vitro and ~100-fold reduced ability to stimulate liver glycogenolysis. Chronic treatment of obese mice with OXM and OXMQ3E demonstrated that OXM exhibits superior weight loss and lipid-lowering efficacy, and antihyperglycemic activity that is comparable to the corresponding GLP1R-selective agonist. Studies in Glp1r(-/-) mice and coadministration of OXM and a GCGR antagonist revealed that the antiobesity effect of OXM requires activation of both GLP1R and GCGR. Our data provide new insight into the mechanism of action of OXM and suggest that activation of GCGR is involved in the body weight-lowering action of OXM.


Subject(s)
Anti-Obesity Agents/pharmacology , Energy Intake/physiology , Glucagon/metabolism , Obesity/metabolism , Oxyntomodulin/metabolism , Receptors, Glucagon/agonists , Weight Loss/drug effects , Animals , Energy Intake/drug effects , Glucagon-Like Peptide-1 Receptor , Glycogenolysis/drug effects , Humans , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/drug therapy , Oxyntomodulin/pharmacology , Receptors, Glucagon/metabolism
13.
ACS Med Chem Lett ; 3(4): 289-93, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-24900466

ABSTRACT

This letter provides the first pharmacological proof of principle that the sst3 receptor mediates glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells. To enable these studies, we identified the selective sst3 antagonist (1R,3R)-3-(5-phenyl-1H-imidazol-2-yl)-1-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (5a), with improved ion channel selectivity and mouse pharmacokinetic properties as compared to previously described tetrahydro-ß-carboline imidazole sst3 antagonists. We demonstrated that compound 5a enhances GSIS in pancreatic ß-cells and blocks glucose excursion induced by dextrose challenge in ipGTT and OGTT models in mice. Finally, we provided strong evidence that these effects are mechanism-based in an ipGTT study, showing reduction of glucose excursion in wild-type but not sst3 knockout mice. Thus, we have shown that antagonism of sst3 represents a new mechanism with potential in treating type 2 diabetes mellitus.

14.
ACS Med Chem Lett ; 3(6): 484-9, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-24900499

ABSTRACT

A structure-activity relationship study of the imidazolyl-ß-tetrahydrocarboline series identified MK-4256 as a potent, selective SSTR3 antagonist, which demonstrated superior efficacy in a mouse oGTT model. MK-4256 reduced glucose excursion in a dose-dependent fashion with maximal efficacy achieved at doses as low as 0.03 mg/kg po. As compared with glipizide, MK-4256 showed a minimal hypoglycemia risk in mice.

15.
Bioorg Med Chem Lett ; 21(9): 2665-9, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21273063

ABSTRACT

Screening of the Merck sample collection identified compound 1 as a weakly potent GPR119 agonist (hEC(50)=3600 nM). Dual termini optimization of 1 led to compound 36 having improved potency, selectivity, and formulation profile, however, modest physical properties (PP) hindered its utility. Design of a new core containing a cyclopropyl restriction yielded further PP improvements and when combined with the termini SAR optimizations yielded a potent and highly selective agonist suitable for further preclinical development (58).


Subject(s)
Diabetes Mellitus, Type 2 , Drug Design , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Type 2/drug therapy , Ethers, Cyclic/chemical synthesis , Ethers, Cyclic/chemistry , Humans , Mice , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 20(19): 5925-32, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20729082

ABSTRACT

Previously, we had disclosed a novel class of hNK(1) antagonists based on the 5,5-fused pyrrolidine core. These compounds displayed subnanomolar hNK(1) affinity along with good efficacy in a gerbil foot-tapping (GFT) model, but unfortunately they had low to moderate functional antagonist (IP-1) activity. To elaborate on the SAR of this class of hNK(1) compounds and to improve functional activity, we have designed and synthesized a new class of hNK(1) antagonist with a third fused ring. Compared to the 5,5-fused pyrrolidine class, these 5,5,5-fused tricyclic hNK(1) antagonists maintain subnanomolar hNK(1) binding affinity with highly improved functional IP-1 activity (<10% SP remaining). A fused tricyclic methyl, hydroxyl geminally substituted pyrrolizinone (compound 20) had excellent functional IP (<2% SP remaining), hNK(1) binding affinity, off-target selectivity, pharmacokinetic profile and in vivo activity. Complete inhibition of agonist activity was observed at both 0 and 24h in the gerbil foot-tapping model with an ID(50) of 0.02 mpk at both 0 and 24h, respectively.


Subject(s)
Antidepressive Agents, Tricyclic/chemistry , Neurokinin-1 Receptor Antagonists , Pyrrolidines/chemistry , Animals , Antidepressive Agents, Tricyclic/chemical synthesis , Antidepressive Agents, Tricyclic/pharmacokinetics , Dogs , Humans , Macaca mulatta , Microsomes/metabolism , Rats , Receptors, Neurokinin-1/metabolism , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 20(7): 2354-8, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20188553

ABSTRACT

A new class of potent NK(1) receptor antagonists with a tetrahydroindolizinone core has been identified. This series of compounds demonstrated improved functional activities as compared to previously identified 5,5-fused pyrrolidine lead structures. SAR at the 7-position of the tetrahydroindolizinone core is discussed in detail. A number of compounds displayed high NK(1) receptor occupancy at both 1 h and 24 h in a gerbil foot tapping model. Compound 40 has high NK(1) binding affinity, good selectivity for other NK receptors and promising in vivo properties. It also has clean P(450) inhibition and hPXR induction profiles.


Subject(s)
Indolizines/chemistry , Indolizines/pharmacology , Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1/metabolism , Animals , Gerbillinae , Humans , Indolizines/pharmacokinetics , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 20(6): 2007-12, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20153964

ABSTRACT

Previous work on human NK(1) (hNK(1)) antagonists in which the core of the structure is a 5,5-fused pyrrolizinone has been disclosed. The structural-activity-relationship studies on simple alpha- and beta-substituted compounds of this series provided several potent and bioavailable hNK(1) antagonists that displayed excellent brain penetration as observed by their good efficacy in the gerbil foot-tapping (GFT) model assay. Several of these compounds exhibited 100% inhibition of the foot-tapping response at 0.1 and 24h with ID(50)'s of less than 1 mpk. One particular alpha-substituted compound (2b) had an excellent pharmacokinetic profile across preclinical species with reasonable in vivo functional activity and minimal ancillary activity.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Neurokinin-1 Receptor Antagonists , Pyrroles/pharmacology , Administration, Oral , Animals , Biological Availability , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacokinetics , Humans , Pyrroles/administration & dosage , Pyrroles/pharmacokinetics
19.
Diabetes ; 58(10): 2258-66, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19602537

ABSTRACT

OBJECTIVE: Oxyntomodulin (OXM) is a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide that reduces body weight in obese subjects through increased energy expenditure and decreased energy intake. The metabolic effects of OXM have been attributed primarily to GLP1R agonism. We examined whether a long acting GLP1R/GCGR dual agonist peptide exerts metabolic effects in diet-induced obese mice that are distinct from those obtained with a GLP1R-selective agonist. RESEARCH DESIGN AND METHODS: We developed a protease-resistant dual GLP1R/GCGR agonist, DualAG, and a corresponding GLP1R-selective agonist, GLPAG, matched for GLP1R agonist potency and pharmacokinetics. The metabolic effects of these two peptides with respect to weight loss, caloric reduction, glucose control, and lipid lowering, were compared upon chronic dosing in diet-induced obese (DIO) mice. Acute studies in DIO mice revealed metabolic pathways that were modulated independent of weight loss. Studies in Glp1r(-/-) and Gcgr(-/-) mice enabled delineation of the contribution of GLP1R versus GCGR activation to the pharmacology of DualAG. RESULTS: Peptide DualAG exhibits superior weight loss, lipid-lowering activity, and antihyperglycemic efficacy comparable to GLPAG. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were more pronounced upon chronic treatment with DualAG than with GLPAG. Dual receptor agonism also increased fatty acid oxidation and reduced hepatic steatosis in DIO mice. The antiobesity effects of DualAG require activation of both GLP1R and GCGR. CONCLUSIONS: Sustained GLP1R/GCGR dual agonism reverses obesity in DIO mice and is a novel therapeutic approach to the treatment of obesity.


Subject(s)
Glucagon-Like Peptide 1/pharmacology , Obesity/prevention & control , Oxyntomodulin/therapeutic use , Receptors, Glucagon/agonists , Amino Acid Sequence , Animals , Body Weight/drug effects , CHO Cells/drug effects , Cricetinae , Cricetulus , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Dietary Fats/pharmacology , Energy Intake , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide-1 Receptor , Injections, Subcutaneous , Insulin/biosynthesis , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Obesity/chemically induced , Obesity/complications , Oxyntomodulin/administration & dosage , Receptors, Glucagon/genetics , Reverse Transcriptase Polymerase Chain Reaction , Weight Loss/drug effects
20.
J Med Chem ; 52(9): 3039-46, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19354254

ABSTRACT

3-[(3aR,4R,5S,7aS)-5-{(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy}-4-(4-fluorophenyl)octahydro-2H-isoindol-2-yl]cyclopent-2-en-1-one (17) is a high affinity, brain-penetrant, hydroisoindoline-based neurokinin-1 (NK(1)) receptor antagonist with a long central duration of action in preclinical species and a minimal drug-drug interaction profile. Positron emission tomography (PET) studies in rhesus showed that this compound provides 90% NK(1) receptor blockade in rhesus brain at a plasma level of 67 nM, which is about 10-fold more potent than aprepitant, an NK(1) antagonist marketed for the prevention of chemotherapy-induced and postoperative nausea and vomiting (CINV and PONV). The synthesis of this enantiomerically pure compound containing five stereocenters includes a Diels-Alder condensation, one chiral separation of the cyclohexanol intermediate, an ether formation using a trichloroacetimidate intermediate, and bis-alkylation to form the cyclic amine.


Subject(s)
Brain/metabolism , Isoindoles/metabolism , Isoindoles/pharmacology , Neurokinin-1 Receptor Antagonists , Administration, Oral , Animals , Aprepitant , CHO Cells , Cricetinae , Cricetulus , Drug Interactions , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Isoindoles/chemical synthesis , Isoindoles/pharmacokinetics , Macaca mulatta , Morpholines/pharmacology , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL