Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38507752

ABSTRACT

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Giant Axonal Neuropathy , Child , Humans , Cytoskeletal Proteins/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Giant Axonal Neuropathy/genetics , Giant Axonal Neuropathy/therapy , Transgenes , Injections, Spinal
2.
Mol Ther ; 32(4): 952-968, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38327046

ABSTRACT

We analyzed retrospective data from toxicology studies involving administration of high doses of adeno-associated virus expressing different therapeutic transgenes to 21 cynomolgus and 15 rhesus macaques. We also conducted prospective studies to investigate acute toxicity following high-dose systemic administration of enhanced green fluorescent protein-expressing adeno-associated virus to 10 rhesus macaques. Toxicity was characterized by transaminitis, thrombocytopenia, and alternative complement pathway activation that peaked on post-administration day 3. Although most animals recovered, some developed ascites, generalized edema, hyperbilirubinemia, and/or coagulopathy that prompted unscheduled euthanasia. Study endpoint livers from animals that recovered and from unscheduled necropsies of those that succumbed to toxicity were analyzed via hypothesis-driven histopathology and unbiased single-nucleus RNA sequencing. All liver cell types expressed high transgene transcript levels at early unscheduled timepoints that subsequently decreased. Thrombocytopenia coincided with sinusoidal platelet microthrombi and sinusoidal endothelial injury identified via immunohistology and single-nucleus RNA sequencing. Acute toxicity, sinusoidal injury, and liver platelet sequestration were similarly observed with therapeutic transgenes and enhanced green fluorescent protein at doses ≥1 × 1014 GC/kg, suggesting it was the consequence of high-dose systemic adeno-associated virus administration, not green fluorescent protein toxicity. These findings highlight a potential toxic effect of high-dose intravenous adeno-associated virus on nonhuman primate liver microvasculature.


Subject(s)
Dependovirus , Thrombocytopenia , Animals , Dependovirus/genetics , Macaca mulatta/genetics , Prospective Studies , Retrospective Studies , Liver/metabolism , Transgenes , Thrombocytopenia/metabolism , Endothelial Cells , Genetic Vectors/genetics
3.
Gene Ther ; 31(3-4): 128-143, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37833563

ABSTRACT

Adeno-associated virus (AAV) vector gene therapy is a promising approach to treat rare genetic diseases; however, an ongoing challenge is how to best modulate host immunity to improve transduction efficiency and therapeutic outcomes. This report presents two studies characterizing multiple prophylactic immunosuppression regimens in male cynomolgus macaques receiving an AAVrh10 gene therapy vector expressing human coagulation factor VIII (hFVIII). In study 1, no immunosuppression was compared with prednisolone, rapamycin (or sirolimus), rapamycin and cyclosporin A in combination, and cyclosporin A and azathioprine in combination. Prednisolone alone demonstrated higher mean peripheral blood hFVIII expression; however, this was not sustained upon taper. Anti-capsid and anti-hFVIII antibody responses were robust, and vector genomes and transgene mRNA levels were similar to no immunosuppression at necropsy. Study 2 compared no immunosuppression with prednisolone alone or in combination with rapamycin or methotrexate. The prednisolone/rapamycin group demonstrated an increase in mean hFVIII expression and a mean delay in anti-capsid IgG development until after rapamycin taper. Additionally, a significant reduction in the plasma cell gene signature was observed with prednisolone/rapamycin, suggesting that rapamycin's tolerogenic effects may include plasma cell differentiation blockade. Immunosuppression with prednisolone and rapamycin in combination could improve therapeutic outcomes in AAV vector gene therapy.


Subject(s)
Cyclosporine , Sirolimus , Male , Humans , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Sirolimus/metabolism , Cyclosporine/metabolism , Plasma Cells , Prednisolone/pharmacology , Prednisolone/therapeutic use , Prednisolone/metabolism , Genetic Therapy , Genetic Vectors/genetics , Macaca/genetics , Dependovirus
4.
Nat Biotechnol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932420

ABSTRACT

The development of liver-based adeno-associated virus (AAV) gene therapies is facing concerns about limited efficiency and durability of transgene expression. We evaluated nonhuman primates following intravenous dosing of AAV8 and AAVrh10 vectors for over 2 years to better define the mechanism(s) of transduction that affect performance. High transduction of non-immunogenic transgenes was achieved, although expression declined over the first 90 days to reach a lower but stable steady state. More than 10% of hepatocytes contained single nuclear domains of vector DNA that persisted despite the loss of transgene expression. Greater reductions in vector DNA and RNA were observed with immunogenic transgenes. Genomic integration of vector sequences, including complex concatemeric structures, were detected in 1 out of 100 cells at broadly distributed loci that were not in proximity to genes associated with hepatocellular carcinoma. Our studies suggest that AAV-mediated transgene expression in primate hepatocytes occurs in two phases: high but short-lived expression from episomal genomes, followed by much lower but stable expression, likely from integrated vectors.

5.
Front Immunol ; 14: 1094279, 2023.
Article in English | MEDLINE | ID: mdl-37033976

ABSTRACT

Immune responses to human non-self transgenes can present challenges in preclinical studies of adeno-associated virus (AAV) gene therapy candidates in nonhuman primates. Although anti-transgene immune responses are usually mild and non-adverse, they can confound pharmacological readouts and complicate translation of results between species. We developed a gene therapy candidate for Pompe disease consisting of AAVhu68, a clade F AAV closely related to AAV9, that expresses an engineered human acid-alpha glucosidase (hGAA) tagged with an insulin-like growth factor 2 variant (vIGF2) peptide for enhanced cell uptake. Rhesus macaques were administered an intravenous dose of 1x1013 genome copies (GC)/kg, 5x1013 GC/kg, or 1 x 1014 GC/kg of AAVhu68.vIGF2.hGAA. Some unusually severe adaptive immune responses to hGAA presented, albeit with a high degree of variability between animals. Anti-hGAA responses ranged from absent to severe cytotoxic T-cell-mediated myocarditis with elevated troponin I levels. Cardiac toxicity was not dose dependent and affected five out of eleven animals. Upon further investigation, we identified an association between toxicity and a major histocompatibility complex class I haplotype (Mamu-A002.01) in three of these animals. An immunodominant peptide located in the C-terminal region of hGAA was subsequently identified via enzyme-linked immunospot epitope mapping. Another notable observation in this preclinical safety study cohort pertained to the achievement of robust and safe gene transfer upon intravenous administration of 5x1013 GC/kg in one animal with a low pre-existing neutralizing anti-capsid antibodies titer (1:20). Collectively, these findings may have significant implications for gene therapy inclusion criteria.


Subject(s)
Glycogen Storage Disease Type II , Myocarditis , Humans , Animals , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , Dependovirus , Macaca mulatta/metabolism , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy
6.
Mol Ther ; 31(7): 1994-2004, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36805083

ABSTRACT

Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.


Subject(s)
Glycogen Storage Disease Type II , Humans , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , Antibodies/genetics , Enzyme Replacement Therapy/methods , Genetic Therapy/methods , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/drug therapy , Liver/metabolism
7.
Hum Gene Ther ; 34(19-20): 1022-1032, 2023 10.
Article in English | MEDLINE | ID: mdl-36719773

ABSTRACT

Advances in adeno-associated virus (AAV)-based gene therapy are transforming our ability to treat rare genetic disorders and address other unmet medical needs. However, the natural prevalence of anti-AAV neutralizing antibodies (NAbs) in humans currently limits the population who can benefit from AAV-based gene therapies. Neonatal Fc receptor (FcRn) plays an essential role in the long half-life of IgG, a key NAb. Researchers have developed several FcRn-inhibiting monoclonal antibodies to treat autoimmune diseases, as inhibiting the interaction between FcRn and IgG Fc can reduce circulating IgG levels to 20-30% of the baseline. We evaluated the utility of one such monoclonal antibody, M281, to reduce pre-existing NAb levels and to permit gene delivery to the liver and heart via systemic AAV gene therapy in mice and nonhuman primates. M281 successfully reduced NAb titers along with total IgG levels; it also enhanced gene delivery to the liver and other organs after intravenous administration of AAV in NAb-positive animals. These results indicate that mitigating pre-existing humoral immunity via disruption of the FcRn-IgG interaction may make AAV-based gene therapies effective in NAb-positive patients.


Subject(s)
Genetic Therapy , Immunity, Humoral , Immunoglobulin G , Animals , Mice , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral , Dependovirus/genetics , Dependovirus/immunology , Genetic Therapy/methods , Genetic Vectors/genetics , Immunity, Humoral/genetics , Immunity, Humoral/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology
8.
Vaccine ; 41(4): 938-944, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36585278

ABSTRACT

Malaria kills around 409,000 people a year, mostly children under the age of five. Malaria transmission-blocking vaccines work to reduce malaria prevalence in a community and have the potential to be part of a multifaceted approach required to eliminate the parasites causing the disease. Pfs25 is a leading malaria transmission-blocking antigen and has been successfully produced in a plant expression system as both a subunit vaccine and as a virus-like particle. This study demonstrates an improved version of the virus-like particle antigen display molecule by eliminating known protease sites from the prior A85 variant. This re-engineered molecule, termed B29, displays three times the number of Pfs25 antigens per virus-like particle compared to the original Pfs25 virus-like particle. An improved purification scheme was also developed, resulting in a substantially higher yield and improved purity. The molecule was evaluated in a mouse model and found to induce improved transmission-blocking activity at lower doses and longer durations than the original molecule.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Mice , Plasmodium falciparum , Protozoan Proteins , Antigens, Protozoan , Malaria/prevention & control , Malaria Vaccines/genetics , Malaria, Falciparum/prevention & control , Antibodies, Protozoan
10.
Mol Ther Methods Clin Dev ; 27: 272-280, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36320416

ABSTRACT

Gene therapy using neurotropic adeno-associated virus vectors represents an emerging solution for genetic disorders affecting the central nervous system. The first approved central nervous system-targeting adeno-associated virus gene therapy, Zolgensma®, for treating spinal muscular atrophy is administered intravenously at high doses that cause liver-associated adverse events in 20%-30% of patients. Intrathecal routes of vector administration, such as the intra-cisterna magna route, provide efficient gene transduction to central nervous system cells while reducing off-target liver transduction. However, significant levels of liver transduction often occur upon intra-cisterna magna vector delivery in preclinical studies. Using vectors expressing monoclonal antibody transgenes, we examined whether passive transfer of adeno-associated virus-neutralizing antibodies as intravenous immunoglobulin before intrathecal adeno-associated virus delivery improved the safety of viral gene therapy targeting the central nervous system in mice and nonhuman primates. We used intracerebroventricular and intra-cisterna magna routes for vector administration to mice and nonhuman primates, respectively, and evaluated transgene expression and vector genome distribution. Our data indicate that pretreatment with intravenous immunoglobulin significantly reduced gene transduction to the liver and other peripheral organs but not to the central nervous system in both species. With further refinement, this method may improve the safety of adeno-associated virus-based, central nervous system-targeting gene therapies in clinical settings.

11.
Mol Ther Methods Clin Dev ; 24: 292-305, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35211641

ABSTRACT

Ornithine transcarbamylase deficiency is a rare X-linked genetic urea cycle disorder leading to episodes of acute hyperammonemia, adverse cognitive and neurological effects, hospitalizations, and in some cases death. DTX301, a non-replicating, recombinant self-complimentary adeno-associated virus vector serotype 8 (scAAV8)-encoding human ornithine transcarbamylase, is a promising gene therapy for ornithine transcarbamylase deficiency; however, the impact of sex and prophylactic immunosuppression on ornithine transcarbamylase gene therapy outcomes is not well characterized. This study sought to describe the impact of sex and immunosuppression in adult, sexually mature female and male cynomolgus macaques through day 140 after DTX301 administration. Four study groups (n = 3/group) were included: male non-immunosuppressed; male immunosuppressed; female non-immunosuppressed; and female immunosuppressed. DTX301 was well tolerated with and without immunosuppression; no notable differences were observed between female and male groups across outcome measures. Prednisolone-treated animals exhibited a trend toward greater vector genome and transgene expression, although the differences were not statistically significant. The hepatic interferon gene signature was significantly decreased in prednisolone-treated animals, and a significant inverse relationship was observed between interferon gene signature levels and hepatic vector DNA and transgene RNA. These observations were not sustained upon immunosuppression withdrawal. Further studies may determine whether the observed effect can be prolonged.

12.
Vaccine ; 40(12): 1864-1871, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35153091

ABSTRACT

BACKGROUND: The potential use of Bacillus anthracis as a bioterrorism weapon requires a safe and effective vaccine that can be immediately distributed for mass vaccination. Protective antigen (PA), a principal component of virulence factors edema toxin and lethal toxin of B. anthracis, has been the topic of extensive research. Previously, full-length PA (PA83) was manufactured using a transient plant-based expression system. Immunization with this PA83 antigen formulated with Alhydrogel® adjuvant elicited strong neutralizing immune responses in mice and rabbits and protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. This Phase 1 study evaluates this vaccine's safety and immunogenicity in healthy human volunteers. METHODS: This first-in-human, single-blind, Phase 1 study was performed at a single center to investigate the safety, reactogenicity, and immunogenicity of the plant-derived PA83-FhCMB vaccine at four escalating dose levels (12.5, 25, 50 or 100 µg) with Alhydrogel® in healthy adults 18-49 years of age (inclusive). Recipients received three doses of vaccine intramuscularly at 28-day intervals. Safety was evaluated on days 3, 7, and 14 following vaccination. Immunogenicity was assessed using an enzyme-linked immunosorbent assay (ELISA) and a toxin neutralizing antibody (TNA) assay on days 0, 14, 28, 56, 84, and 180. RESULTS: All four-dose ranges were safe and immunogenic, with no related serious adverse events observed. Peak ELISA Geometric Mean Concentration (GMC) and TNA ED50 Geometric Mean Titer (GMT) were noted at Day 84, 1 month after the final dose, with the most robust response detected in the highest dose group. Antibody responses decreased by Day 180 across all dose groups. Long-term immunogenicity data beyond six months was not collected. CONCLUSIONS: This is the first study demonstrating a plant-derived subunit anthrax vaccine's safety and immunogenicity in healthy adults. The results support further clinical investigation of the PA83-FhCMB vaccine. ClinicalTrials.gov identifier. NCT02239172.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Adult , Anthrax/prevention & control , Antibodies, Bacterial , Antigens, Bacterial , Antigens, Plant , Humans , Immunogenicity, Vaccine , Single-Blind Method
13.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34428428

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
14.
bioRxiv ; 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33442684

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 70 million people worldwide and resulted in over 1.5 million deaths. A broad deployment of effective immunization campaigns to achieve population immunity at global scale will depend on the biological and logistical attributes of the vaccine. Here, two adeno-associated viral (AAV)-based vaccine candidates demonstrate potent immunogenicity in mouse and nonhuman primates following a single injection. Peak neutralizing antibody titers remain sustained at 5 months and are complemented by functional memory T-cells responses. The AAVrh32.33 capsid of the AAVCOVID vaccine is an engineered AAV to which no relevant pre-existing immunity exists in humans. Moreover, the vaccine is stable at room temperature for at least one month and is produced at high yields using established commercial manufacturing processes in the gene therapy industry. Thus, this methodology holds as a very promising single dose, thermostable vaccine platform well-suited to address emerging pathogens on a global scale.

15.
Sci Transl Med ; 12(569)2020 11 11.
Article in English | MEDLINE | ID: mdl-33177182

ABSTRACT

Delivering adeno-associated virus (AAV) vectors into the central nervous system of nonhuman primates (NHPs) via the blood or cerebral spinal fluid is associated with dorsal root ganglion (DRG) toxicity. Conventional immune-suppression regimens do not prevent this toxicity, possibly because it may be caused by high transduction rates, which can, in turn, cause cellular stress due to an overabundance of the transgene product in target cells. To test this hypothesis and develop an approach to eliminate DRG toxicity, we exploited endogenous expression of microRNA (miR) 183 complex, which is largely restricted to DRG neurons, to specifically down-regulate transgene expression in these cells. We introduced sequence targets for miR183 into the vector genome within the 3' untranslated region of the corresponding transgene messenger RNA and injected vectors into the cisterna magna of NHPs. Administration of unmodified AAV vectors resulted in robust transduction of target tissues and toxicity in DRG neurons. Consistent with the proposal that immune system activity does not mediate this neuronal toxicity, we found that steroid administration was ineffective in alleviating this pathology. However, including miR183 targets in the vectors reduced transgene expression in, and toxicity of, DRG neurons without affecting transduction elsewhere in the primate's brain. This approach might be useful in reducing DRG toxicity and the associated morbidity and should facilitate the development of AAV-based gene therapies for many central nervous system diseases.


Subject(s)
Dependovirus , MicroRNAs , Animals , Dependovirus/genetics , Ganglia, Spinal , Gene Transfer Techniques , Genetic Vectors/genetics , MicroRNAs/genetics , Primates , Transduction, Genetic , Transgenes/genetics
16.
Nat Commun ; 10(1): 4328, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551421

ABSTRACT

Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines.


Subject(s)
Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Antibodies, Protozoan/chemistry , Antibody Formation , Binding Sites, Antibody , Crystallography, X-Ray , Humans , Malaria, Falciparum/transmission , Protozoan Proteins/chemistry
17.
Hum Gene Ther ; 30(8): 957-966, 2019 08.
Article in English | MEDLINE | ID: mdl-31017018

ABSTRACT

Many neuropathic diseases cause early, irreversible neurologic deterioration, which warrants therapeutic intervention during the first months of life. In the case of mucopolysaccharidosis type I, a recessive lysosomal storage disorder that results from a deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), one of the most promising treatment approaches is to restore enzyme expression through gene therapy. Specifically, administering pantropic adeno-associated virus (AAV) encoding IDUA into the cerebrospinal fluid (CSF) via suboccipital administration has demonstrated remarkable efficacy in large animals. Preclinical safety studies conducted in adult nonhuman primates supported a positive risk-benefit profile of the procedure while highlighting potential subclinical toxicity to primary sensory neurons located in the dorsal root ganglia (DRG). This study investigated the long-term performance of intrathecal cervical AAV serotype 9 gene transfer of human IDUA administered to 1-month-old rhesus monkeys (N = 4) with half of the animals tolerized to the human transgene at birth via systemic administration of an AAV serotype 8 vector expressing human IDUA from the liver. Sustained expression of the transgene for almost 4 years is reported in all animals. Transduced cells were primarily pyramidal neurons in the cortex and hippocampus, Purkinje cells in the cerebellum, lower motor neurons, and DRG neurons. Both tolerized and non-tolerized animals were robust and maintained transgene expression as measured by immunohistochemical analysis of brain tissue. However, the presence of antibodies in the non-tolerized animals led to a loss of measurable levels of secreted enzyme in the CSF. These results support the safety and efficiency of treating neonatal rhesus monkeys with AAV serotype 9 gene therapy delivered into the CSF.


Subject(s)
Dependovirus/genetics , Gene Expression , Gene Transfer Techniques , Genetic Vectors/genetics , Iduronidase/genetics , Transgenes , Animals , Dependovirus/classification , Female , Ganglia, Spinal/metabolism , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Iduronidase/metabolism , Immunohistochemistry , Injections, Spinal , Macaca mulatta , Neurons/metabolism , Organ Specificity , Promoter Regions, Genetic , Serogroup , Tissue Distribution
18.
Vaccine ; 37(12): 1591-1600, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30795941

ABSTRACT

BACKGROUND: Highly pathogenic H5N1 influenza viruses remain a pandemic risk to the world population. Although vaccines are the best solution to prevent this threat, a more effective vaccine for H5 strains of influenza has yet to be developed. All existing vaccines target only serum antibody against influenza as the primary outcome, while mucosal immunity has not been addressed. To address these shortcomings we have used an effective mucosal adjuvant system to produce a prototype vaccine that provides antibody, cellular and mucosal immunity to multiple serotypes of H5. METHODS: Plant-derived recombinant H5 (rH5) antigen was mixed with a novel nanoemulsion NE01 adjuvant. The rH5-NE01 vaccine was administered intranasally to CD-1 mice and ferrets. Immunogenicity of this immunization was evaluated through rH5-specific antibody and cellular immune responses. Hemagglutination inhibition (HI) and virus neutralization (VN) assays were performed. Protection against H5N1 virus challenge was evaluated in ferrets. RESULTS: Intranasal immunization with rH5-NE01vaccine induced high titers (>106) of rH5-specific IgG in mice. In mice and ferrets this vaccine also achieved titers of ≥40 for both HI and VN. Additionally, the levels of rH5-specific IgA were significantly increased in bronchial secretions in these animals. The rH5-NE01 vaccine enhanced rH5-specific cellular immune responses including IFN-γ and IL-17. Ten-day survival post challenge was 100% in ferrets that received rH5-NE01compared to 12.5% in the PBS group. Furthermore, this vaccine prevented weight loss and increases in body temperature after H5N1 challenge as compared to the controls. Moreover, H5N1 virus in nasal wash of rH5-NE01-vaccinated ferrets was significantly decreased compared to controls. CONCLUSION: Intranasal immunization with rH5 antigen formulated with NE01 adjuvant elicited strong, broad and balanced immune responses that effectively protect against H5N1 influenza virus infection in the ferret model. The ease of formulation of rH5-NE01 makes this novel combination a promising mucosal vaccine candidate for pandemic influenza.


Subject(s)
Adjuvants, Immunologic , Emulsions , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cytokines/metabolism , Female , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Immunization , Immunogenicity, Vaccine , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Male , Mice , Orthomyxoviridae Infections/prevention & control , Recombinant Proteins
19.
Vaccine ; 36(39): 5865-5871, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30126674

ABSTRACT

Malaria continues to be one of the world's most devastating infectious tropical diseases, and alternative strategies to prevent infection and disease spread are urgently needed. These strategies include the development of effective vaccines, such as malaria transmission blocking vaccines (TBV) directed against proteins found on the sexual stages of Plasmodium falciparum parasites present in the mosquito midgut. The Pfs25 protein, which is expressed on the surface of gametes, zygotes and ookinetes, has been a primary target for TBV development. One such vaccine strategy based on Pfs25 is a plant-produced malaria vaccine candidate engineered as a chimeric non-enveloped virus-like particle (VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein. This Pfs25 VLP-FhCMB vaccine candidate has been engineered and manufactured in Nicotiana benthamiana plants at pilot plant scale under current Good Manufacturing Practice guidelines. The safety, reactogenicity and immunogenicity of Pfs25 VLP-FhCMB was assessed in healthy adult volunteers. This Phase 1, dose escalation, first-in-human study was designed primarily to evaluate the safety of the purified plant-derived Pfs25 VLP combined with Alhydrogel® adjuvant. At the doses tested in this Phase 1 study, the vaccine was generally shown to be safe in healthy volunteers, with no incidence of vaccine-related serious adverse events and no evidence of any dose-limiting or dose-related toxicity, demonstrating that the plant-derived Pfs25 VLP-FhCMB vaccine had an acceptable safety and tolerability profile. In addition, although the vaccine did induce Pfs25-specific IgG in vaccinated patients in a dose dependent manner, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine adjuvant formulation. This study was registered at www.ClinicalTrials.gov under reference identifier NCT02013687.


Subject(s)
Immunogenicity, Vaccine , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Alfalfa mosaic virus , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Female , Healthy Volunteers , Humans , Malaria Vaccines/adverse effects , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum , Nicotiana/metabolism , Vaccines, Synthetic/adverse effects , Young Adult
20.
Hum Gene Ther Methods ; 29(2): 86-95, 2018 04.
Article in English | MEDLINE | ID: mdl-29668327

ABSTRACT

Adeno-associated virus (AAV)-based gene therapy is being applied to treat a wide array of diseases. Preexisting host immune responses to AAV and immune responses elicited by AAV vector administration remain a problem that needs to be further studied. Here we present a series of protocols to assess immune responses before and after AAV vector administration that are applicable to multiple animal models and phase 1 clinical trials. More specifically, they may be use to evaluate (1) the humoral immune response, through levels of AAV-neutralizing and binding antibodies; (2) the innate immune response, through the acute induction of inflammatory cytokines; and (3) the T-cell immune response, through the activation of transgene- and vector-specific CD8+ and CD4+ T cells.


Subject(s)
Antibodies/analysis , Dependovirus/genetics , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Transduction, Genetic/methods , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Dependovirus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Enzyme-Linked Immunospot Assay/methods , Enzyme-Linked Immunospot Assay/standards , Epitope Mapping/methods , Epitope Mapping/standards , Genetic Therapy/methods , Genetic Vectors/chemistry , Genetic Vectors/immunology , Humans , Interferons/analysis , Interferons/biosynthesis , Interleukins/analysis , Interleukins/biosynthesis , Primary Cell Culture , Transduction, Genetic/instrumentation , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...