Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928451

ABSTRACT

Phytaspases differ from other members of the plant subtilisin-like protease family by having rare aspartate cleavage specificity and unusual localization dynamics. Phytaspases are secreted from healthy plant cells but are re-internalized upon perception of death-inducing stresses. Although proteolytic activity is required for the secretion of plant subtilases, its requirement for the retrograde transportation of phytaspases is currently unknown. To address this issue, we employed an approach to complement in trans the externalization of a prodomain-less form of Nicotiana tabacum phytaspase (NtPhyt) with the free prodomain in Nicotiana benthamiana leaf cells. Using this approach, the generation of the proteolytically active NtPhyt and its transport to the extracellular space at a level comparable to that of the native NtPhyt (synthesized as a canonical prodomain-containing precursor protein) were achieved. The application of this methodology to NtPhyt with a mutated catalytic Ser537 residue resulted in the secretion of the inactive, although processed (prodomain-free), protein as well. Notably, the externalized NtPhyt Ser537Ala mutant was still capable of retrograde transportation into plant cells upon the induction of oxidative stress. Our data thus indicate that the proteolytic activity of NtPhyt is dispensable for stress-induced retrograde transport of the enzyme.


Subject(s)
Nicotiana , Plant Proteins , Proteolysis , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidative Stress , Stress, Physiological , Subtilisins/metabolism , Subtilisins/genetics , Plant Leaves/metabolism , Protein Transport
2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003717

ABSTRACT

Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident.


Subject(s)
Calreticulin , Nicotiana , Calreticulin/metabolism , Nicotiana/metabolism , Endoplasmic Reticulum/metabolism , Plant Proteins/metabolism , Peptide Hydrolases/metabolism
3.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884925

ABSTRACT

Proteolytic enzymes are instrumental in various aspects of plant development, including senescence. This may be due not only to their digestive activity, which enables protein utilization, but also to fulfilling regulatory functions. Indeed, for the largest family of plant serine proteases, subtilisin-like proteases (subtilases), several members of which have been implicated in leaf and plant senescence, both non-specific proteolysis and regulatory protein processing have been documented. Here, we strived to identify the protein partners of phytaspase, a plant subtilase involved in stress-induced programmed cell death that possesses a characteristic aspartate-specific hydrolytic activity and unusual localization dynamics. A proximity-dependent biotin identification approach in Nicotiana benthamiana leaves producing phytaspase fused to a non-specific biotin ligase TurboID was employed. Although the TurboID moiety appeared to be unstable in the apoplast environment, several intracellular candidate protein interactors of phytaspase were identified. These were mainly, though not exclusively, represented by soluble residents of the endoplasmic reticulum, namely endoplasmin, BiP, and calreticulin-3. For calreticultin-3, whose gene is characterized by an enhanced expression in senescing leaves, direct interaction with phytaspase was confirmed in an in vitro binding assay using purified proteins. In addition, an apparent alteration of post-translational modification of calreticultin-3 in phytaspase-overproducing plant cells was observed.


Subject(s)
Nicotiana/metabolism , Plant Proteins/metabolism , Subtilisins/metabolism , Biotin/pharmacology , Biotinylation , Calreticulin/metabolism , Carbon-Nitrogen Ligases/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Protein Interaction Maps
4.
Sci Rep ; 10(1): 5661, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32205847

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Front Plant Sci ; 10: 873, 2019.
Article in English | MEDLINE | ID: mdl-31379892

ABSTRACT

Phytaspases belong to the family of plant subtilisin-like proteases and are distinct from other family members, as they have strict and rarely occurring aspartate cleavage specificity and unusual localization dynamics. After being secreted into the apoplast of healthy plant tissues, phytaspases are able to return back into cells that have been committed to cell death due to a variety of biotic and abiotic stresses. It was recently discovered that retrograde transport of phytaspases involves clathrin-mediated endocytosis. Here, consequences of phytaspase internalization were studied. Proteolytic activity of phytaspases in the apoplast and intracellular protein fractions obtained from Nicotiana benthamiana leaves containing either endogenous phytaspase only or transiently producing Nicotiana tabacum phytaspase-EGFP protein (NtPhyt-EGFP) was determined. We demonstrated that triggering phytaspase internalization by antimycin A-induced oxidative stress is accompanied by re-distribution of phytaspase activity from the apoplast to the cell interior. Inhibition of clathrin-mediated endocytosis by co-production of the Hub protein prevented phytaspase internalization and phytaspase activity re-localization. Specificity of endocytic uptake of phytaspases was demonstrated by the co-production of an apoplast-targeted mRFP protein marker, which retained its apoplastic localization when phytaspase internalization was essentially complete. Overproduction of NtPhyt-EGFP, but not of the proteolytically inactive phytaspase mutant, per se caused moderate damage in young Nicotiana benthamiana seedlings, whereas antimycin A treatment induced a pronounced loss of cell viability independent of the NtPhyt-EGFP overproduction. Interestingly, inhibition of clathrin-mediated endocytosis abrogated cell death symptoms in both cases. In contrast to stress-induced internalization of tobacco phytaspase, Arabidopsis thaliana phytaspase-EGFP protein (AtPhyt-EGFP) was spontaneously internalized when transiently produced in N. benthamiana leaves. The AtPhyt-EGFP uptake was dependent on clathrin-mediated endocytosis as well, the internalized protein being initially visualized within the membranous vesicles. At later time points, the EGFP tag was cleaved off from AtPhyt, though the elevated level of intracellular AtPhyt proteolytic activity persisted. Our data, therefore, point to clathrin-mediated endocytosis as a means to deliver proteolytically active phytaspases into plant cells. It would be interesting to learn whether or not phytaspases are unique among the large family of plant subtilisin-like proteases in their ability to utilize retrograde trafficking.

7.
Sci Rep ; 8(1): 10531, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30002392

ABSTRACT

Phytaspases are Asp-specific subtilisin-like plant proteases that have been likened to animal caspases with respect to their regulatory function in programmed cell death (PCD). We identified twelve putative phytaspase genes in tomato that differed widely in expression level and tissue-specific expression patterns. Most phytaspase genes are tandemly arranged on tomato chromosomes one, four, and eight, and many belong to taxon-specific clades, e.g. the P69 clade in the nightshade family, suggesting that these genes evolved by gene duplication after speciation. Five tomato phytaspases (SlPhyts) were expressed in N. benthamiana and purified to homogeneity. Substrate specificity was analyzed in a proteomics assay and with a panel of fluorogenic peptide substrates. Similar to animal caspases, SlPhyts recognized an extended sequence motif including Asp at the cleavage site. Clear differences in cleavage site preference were observed implying different substrates in vivo and, consequently, different physiological functions. A caspase-like function in PCD was confirmed for five of the seven tested phytaspases. Cell death was triggered by ectopic expression of SlPhyts 2, 3, 4, 5, 6 in tomato leaves by agro-infiltration, as well as in stably transformed transgenic tomato plants. SlPhyts 3, 4, and 5 were found to contribute to cell death under oxidative stress conditions.


Subject(s)
Caspases/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Apoptosis/physiology , Caspases/genetics , Cell Death , Ectopic Gene Expression , Gene Duplication , Genes, Plant/genetics , Solanum lycopersicum/genetics , Oxidative Stress/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Proteomics , Substrate Specificity , Nicotiana/genetics , Nicotiana/metabolism
8.
New Phytol ; 218(3): 901-915, 2018 05.
Article in English | MEDLINE | ID: mdl-28467631

ABSTRACT

Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.


Subject(s)
Plants/enzymology , Subtilisins/chemistry , Subtilisins/metabolism , Cell Death , Phylogeny , Plant Physiological Phenomena
9.
Funct Plant Biol ; 45(2): 171-179, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291031

ABSTRACT

Phytaspases are plant cell death-related proteases of the subtilisin-like protease family that possess an unusual aspartate cleavage specificity. Although phytaspase activity is widespread in plants, phytaspase of Arabidopsis thaliana (L.) Heynh. has escaped detection and identification thus far. Here, we show that a single gene (At4 g10540) out of 56 A. thaliana subtilisin-like protease genes encodes a phytaspase. The recombinant phytaspase was overproduced in Nicotiana benthamiana Domin leaves, isolated, and its substrate specificity and properties were characterised. At pH 5.5, at physiological mildly acidic reaction conditions, the Arabidopsis phytaspase was shown to be strictly Asp-specific. The strongly preferred cleavage motifs of the enzyme out of a panel of synthetic peptide substrates were YVAD and IETD, while the VEID-based substrate preferred by the tobacco and rice phytaspases was almost completely resistant to hydrolysis. At neutral pH, however, the Arabidopsis phytaspase could hydrolyse peptide substrates after two additional amino acid residues, His and Phe, in addition to Asp. This observation may indicate that the repertoire of Arabidopsis phytaspase targets could possibly be regulated by the conditions of the cellular environment. Similar to tobacco and rice phytaspases, the Arabidopsis enzyme was shown to accumulate in the apoplast of epidermal leaf cells. However, in stomatal cells Arabidopsis phytaspase was observed inside the cells, possibly co-localising with vacuole. Our study thus demonstrates that the Arabidopsis phytaspase possesses both important similarities with and distinctions from the already known phytaspases, and is likely to be the most divergent member of the phytaspase family.

10.
New Phytol ; 218(3): 1167-1178, 2018 05.
Article in English | MEDLINE | ID: mdl-28407256

ABSTRACT

Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Peptides/metabolism , Plant Growth Regulators/metabolism , Protein Precursors/metabolism , Protein Processing, Post-Translational , Solanum lycopersicum/metabolism , Hydrolysis , Signal Transduction
11.
J Biol Chem ; 290(41): 24806-15, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26283788

ABSTRACT

Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones.


Subject(s)
Oryza/enzymology , Subtilisin/metabolism , Amino Acid Sequence , Binding Sites , Cell Death , Cholecystokinin/metabolism , Gastrins/metabolism , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Kinetics , Oryza/cytology , Protein Binding , Substrate Specificity , Subtilisin/chemistry
12.
Physiol Plant ; 145(1): 77-84, 2012 May.
Article in English | MEDLINE | ID: mdl-22182311

ABSTRACT

Proteases with an aspartate cleavage specificity are known to contribute to programmed cell death (PCD) in animals and plants. In animal cells this proteolytic activity belongs to caspases, a well-characterized family of cysteine-dependent death proteases. Plants, however, lack caspase homologs and thus the origin of this type of proteolytic activity in planta was poorly understood. Here, we review recent data demonstrating that a plant serine-dependent protease, phytaspase, shares cleavage specificity and a role in PCD analogous to that of caspases. However, unlike caspases, regulation of phytaspase-mediated cleavage of intracellular target proteins appears to be attained not at the level of proenzyme processing/activation, which occurs, in the case of phytaspase, autocatalytically and constitutively. Rather, the mature phytaspase is excluded from healthy cells into the apoplast and is allowed to re-enter cells upon the induction of PCD. Thus, PCD-related proteases in animals and plants display both common features and important distinctions.


Subject(s)
Caspases/metabolism , Cell Death , Nicotiana/enzymology , Plant Proteins/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain , Enzyme Activation , Host-Pathogen Interactions , Plant Diseases/virology , Proteolysis , Species Specificity , Substrate Specificity , Subtilisins/metabolism , Nicotiana/virology , Tobacco Mosaic Virus/drug effects , Tobacco Mosaic Virus/pathogenicity
13.
EMBO J ; 29(6): 1149-61, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20111004

ABSTRACT

Caspases are cysteine-dependent proteases and are important components of animal apoptosis. They introduce specific breaks after aspartate residues in a number of cellular proteins mediating programmed cell death (PCD). Plants encode only distant homologues of caspases, the metacaspases that are involved in PCD, but do not possess caspase-specific proteolytic activity. Nevertheless, plants do display caspase-like activities indicating that enzymes structurally distinct from classical caspases may operate as caspase-like proteases. Here, we report the identification and characterisation of a novel PCD-related subtilisin-like protease from tobacco and rice named phytaspase (plant aspartate-specific protease) that possesses caspase specificity distinct from that of other known caspase-like proteases. We provide evidence that phytaspase is synthesised as a proenzyme, which is autocatalytically processed to generate the mature enzyme. Overexpression and silencing of the phytaspase gene showed that phytaspase is essential for PCD-related responses to tobacco mosaic virus and abiotic stresses. Phytaspase is constitutively secreted into the apoplast before PCD, but unexpectedly is re-imported into the cell during PCD providing insights into how phytaspase operates.


Subject(s)
Caspases/metabolism , Peptide Hydrolases/metabolism , Plant Proteins/metabolism , Caspases/chemistry , Caspases/genetics , Cell Death , Cells, Cultured , Oryza/genetics , Oryza/metabolism , Peptide Hydrolases/analysis , Peptide Hydrolases/genetics , Plant Proteins/chemistry , Plants, Genetically Modified , Substrate Specificity , Nicotiana/genetics , Nicotiana/metabolism
14.
Plant Cell Rep ; 26(8): 1215-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17370074

ABSTRACT

Agrobacterium tumefaciens VirD2 protein is one of the key elements of Agrobacterium-mediated plant transformation, a process of transfer of T-DNA sequence from the Agrobacterium tumour inducing plasmid into the nucleus of infected plant cells and its integration into the host genome. The VirD2 protein has been shown to be a substrate for a plant caspase-like protease activity (PCLP) in tobacco. We demonstrate here that mutagenesis of the VirD2 protein to prevent cleavage by PCLP increases the efficiency of reporter gene transfer and expression. These results indicate that PCLP cleavage of the Agrobacterium VirD2 protein acts to limit the effectiveness of T-DNA transfer and is a novel resistance mechanism that plants utilise to combat Agrobacterium infection.


Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caspases/metabolism , Gene Expression , Plants/genetics , Plants/metabolism , DNA, Bacterial/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant
15.
Mol Cell Biol ; 25(3): 1089-99, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15657435

ABSTRACT

Animal cells counteract oxidative stress and electrophilic attack through coordinated expression of a set of detoxifying and antioxidant enzyme genes mediated by transcription factor Nrf2. In unstressed cells, Nrf2 appears to be sequestered in the cytoplasm via association with an inhibitor protein, Keap1. Here, by using the yeast two-hybrid screen, human Keap1 has been identified as a partner of the nuclear protein prothymosin alpha. The in vivo and in vitro data indicated that the prothymosin alpha-Keap1 interaction is direct, highly specific, and functionally relevant. Furthermore, we showed that Keap1 is a nuclear-cytoplasmic shuttling protein equipped with a nuclear export signal that is important for its inhibitory action. Prothymosin alpha was able to liberate Nrf2 from the Nrf2-Keap1 inhibitory complex in vitro through competition with Nrf2 for binding to the same domain of Keap1. In vivo, the level of Nrf2-dependent transcription was correlated with the intracellular level of prothymosin alpha by using prothymosin alpha overproduction and mRNA interference approaches. Our data attribute to prothymosin alpha the role of intranuclear dissociator of the Nrf2-Keap1 complex, thus revealing a novel function for prothymosin alpha and adding a new dimension to the molecular mechanisms underlying expression of oxidative stress-protecting genes.


Subject(s)
DNA-Binding Proteins/metabolism , Oxidative Stress/genetics , Protein Precursors/metabolism , Proteins/metabolism , Thymosin/analogs & derivatives , Thymosin/metabolism , Trans-Activators/metabolism , Transcriptional Activation/genetics , Active Transport, Cell Nucleus/genetics , Active Transport, Cell Nucleus/physiology , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Oxidative Stress/physiology , Protein Binding , RNA, Small Interfering/metabolism , Transcriptional Activation/physiology , Tumor Cells, Cultured , Two-Hybrid System Techniques
16.
Plant Cell ; 16(1): 157-71, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14660804

ABSTRACT

To test the hypothesis that caspase-like proteases exist and are critically involved in the implementation of programmed cell death (PCD) in plants, a search was undertaken for plant caspases activated during the N gene-mediated hypersensitive response (HR; a form of pathogen-induced PCD in plants) in tobacco plants infected with Tobacco mosaic virus (TMV). For detection, characterization, and partial purification of a tobacco caspase, the Agrobacterium tumefaciens VirD2 protein, shown here to be cleaved specifically at two sites (TATD and GEQD) by human caspase-3, was used as a target. In tobacco leaves, specific proteolytic processing of the ectopically produced VirD2 derivatives at these sites was found to occur early in the course of the HR triggered by TMV. A proteolytic activity capable of specifically cleaving the model substrate at TATD was partially purified from these leaves. A tetrapeptide aldehyde designed and synthesized on the basis of the elucidated plant caspase cleavage site prevented fragmentation of the substrate protein by plant and human caspases in vitro and counteracted TMV-triggered HR in vivo. Therefore, our data provide a characterization of caspase-specific protein fragmentation in apoptotic plant cells, with implications for the importance of such activity in the implementation of plant PCD.


Subject(s)
Endopeptidases/metabolism , Nicotiana/enzymology , Agrobacterium tumefaciens/growth & development , Apoptosis/drug effects , Apoptosis/physiology , Caspase 3 , Caspase Inhibitors , Caspases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Endopeptidases/genetics , Enzyme Activation , Green Fluorescent Proteins , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Plant Diseases/genetics , Plant Diseases/virology , Nicotiana/genetics , Nicotiana/virology , Tobacco Mosaic Virus/drug effects , Tobacco Mosaic Virus/growth & development
17.
Exp Cell Res ; 284(2): 211-23, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12651154

ABSTRACT

Human prothymosin alpha is a proliferation-related nuclear protein undergoing caspase-mediated fragmentation in apoptotic cells. We show here that caspase-3 is the principal executor of prothymosin alpha fragmentation in vivo. In apoptotic HeLa cells as well as in vitro, caspase-3 cleaves prothymosin alpha at one major carboxy terminal (DDVD(99)) and several suboptimal sites. Prothymosin alpha cleavage at two amino-terminal sites (AAVD(6) and NGRD(31)) contributes significantly to the final pattern of prothymosin alpha fragmentation in vitro and could be detected to occur in apoptotic cells. The major caspase cleavage at D(99) disrupts the nuclear localization signal of prothymosin alpha, which leads to a profound alteration in subcellular localization of the truncated protein. By using a set of anti-prothymosin alpha monoclonal antibodies, we were able to observe nuclear escape and cell surface exposure of endogenous prothymosin alpha in apoptotic, but not in normal, cells. We demonstrate also that ectopic production of human prothymosin alpha and its mutants with nuclear or nuclear-cytoplasmic localization confers increased resistance of HeLa cells toward the tumor necrosis factor-induced apoptosis.


Subject(s)
Apoptosis/physiology , Caspases/metabolism , Eukaryotic Cells/metabolism , Peptide Fragments/metabolism , Protein Precursors/biosynthesis , Protein Transport/physiology , Thymosin/analogs & derivatives , Thymosin/biosynthesis , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/physiology , Amino Acid Sequence/physiology , Antibodies, Monoclonal , Apoptosis/drug effects , Caspase 3 , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Exocytosis/drug effects , Exocytosis/physiology , HeLa Cells , Humans , Mutation/genetics , Protein Precursors/antagonists & inhibitors , Protein Precursors/genetics , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/physiology , Protein Transport/drug effects , Thymosin/antagonists & inhibitors , Thymosin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...