Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339132

ABSTRACT

The diagnosis of endometriosis by laparoscopy is delayed until advanced stages. In recent years, microRNAs have emerged as novel biomarkers for different diseases. These molecules are small non-coding RNA sequences involved in the regulation of gene expression and can be detected in peripheral blood. Our aim was to identify candidate serum microRNAs associated with endometriosis and their role as minimally invasive biomarkers. Serum samples were obtained from 159 women, of whom 77 were diagnosed with endometriosis by laparoscopy and 82 were healthy women. First, a preliminary study identified 29 differentially expressed microRNAs between the two study groups. Next, nine of the differentially expressed microRNAs in the preliminary analysis were evaluated in a new cohort of 67 women with endometriosis and 72 healthy women. Upon validation by quantitative real-time PCR technique, the circulating level of miR-30c-5p was significantly higher in the endometriosis group compared with the healthy women group. The area under the curve value of miR-30c-5p was 0.8437, demonstrating its diagnostic potential even when serum samples registered an acceptable limit of hemolysis. Dysregulation of this microRNA was associated with molecular pathways related to cancer and neuronal processes. We concluded that miR-30c-5p is a potential minimally invasive biomarker of endometriosis, with higher expression in the group of women with endometriosis diagnosed by laparoscopy.


Subject(s)
Endometriosis , MicroRNAs , Humans , Female , MicroRNAs/genetics , Endometriosis/diagnosis , Endometriosis/genetics , Biomarkers , Cell Death , Real-Time Polymerase Chain Reaction
2.
Biogerontology ; 25(2): 227-248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37943366

ABSTRACT

Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the "duration of life" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.


Subject(s)
Reproduction , Telomerase , Humans , Male , Female , Telomere Homeostasis , Aging/genetics , Telomere , Telomere Shortening , Telomerase/genetics
3.
Womens Health Rep (New Rochelle) ; 4(1): 305-318, 2023.
Article in English | MEDLINE | ID: mdl-37476605

ABSTRACT

Background: Most women who are treated at in vitro fertilization (IVF) clinics have trouble conceiving due to ovarian failure (OF), which seems to be associated to short telomeres and reduced or absent telomerase activity in their granulosa cells. Indeed, telomere pathways are involved in organ dysfunction. However, sexual steroids can stimulate the expression of the telomerase gene and have been successfully used to prevent telomere attrition. Thus, a strategy to improve IVF outcomes in women with OF could be telomerase reactivation using sexual steroids. Methods: We conducted a double-blind, placebo-controlled study. Patients with diminished ovarian reserve were randomized to Danazol or placebo for 3 months. We included patients with normal ovarian reserve in the study as untreated controls. Patients and controls underwent several ovarian stimulations (OSs). Telomere and IVF parameters were assessed. Results: We found that the mean telomere length in blood and the percentage of short and long telomeres were similar throughout the 3 months of treatment with Danazol. Remarkably, while the number of cells with one telomeric repeat-containing RNA (TERRA) focus decreased (p = 0.04) after the first month of Danazol treatment, the number of cells with 2 to 4 TERRA foci increased (p = 0.02). Regarding fertility, no differences were found in the antral follicle count. Interestingly, in OS performed after the trial, all Danazol-treated patients had a better MII oocyte rate compared to OS performed before the pilot study.EudraCT number: 2018-004400-19. Conclusions: Danazol treatment seemed to affect telomere maintenance, since both the number of TERRA foci and the ratio of MII oocytes changed. However, further research is needed to confirm these results.

4.
Aging (Albany NY) ; 15(11): 4600-4624, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37338562

ABSTRACT

Ovarian aging is the main cause of infertility and telomere attrition is common to both aging and fertility disorders. Senescence-Accelerated Mouse Prone 8 (SAMP8) model has shortened lifespan and premature infertility, reflecting signs of reproductive senescence described in middle-aged women. Thus, our objective was to study SAMP8 female fertility and the telomere pathway at the point of reproductive senescence. The lifespan of SAMP8 and control mice was monitored. Telomere length (TL) was measured by in situ hybridization in blood and ovary. Telomerase activity (TA) was analyzed by telomere-repeat amplification protocol, and telomerase expression, by real-time quantitative PCR in ovaries from 7-month-old SAMP8 and controls. Ovarian follicles at different stages of maturation were evaluated by immunohistochemistry. Reproductive outcomes were analyzed after ovarian stimulation. Unpaired t-test or Mann-Whitney test were used to calculate p-values, depending on the variable distribution. Long-rank test was used to compare survival curves and Fisher's exact test was used in contingency tables. Median lifespan of SAMP8 females was reduced compared to SAMP8 males (p = 0.0138) and control females (p < 0.0001). In blood, 7-month-old SAMP8 females presented lower mean TL compared to age-matched controls (p = 0.041). Accordingly, the accumulation of short telomeres was higher in 7-month-old SAMP8 females (p = 0.0202). Ovarian TA was lower in 7-month-old SAMP8 females compared to controls. Similarly, telomerase expression was lower in the ovaries of 7-month-old SAMP8 females (p = 0.04). Globally, mean TL in ovaries and granulosa cells (GCs) were similar. However, the percentage of long telomeres in ovaries (p = 0.004) and GCs (p = 0.004) from 7-month-old SAMP8 females was lower compared to controls. In early-antral and antral follicles, mean TL of SAMP8 GCs was lower than in age-matched controls (p = 0.0156 for early-antral and p = 0.0037 for antral follicles). Middle-aged SAMP8 showed similar numbers of follicles than controls, although recovered oocytes after ovarian stimulation were lower (p = 0.0068). Fertilization rate in oocytes from SAMP8 was not impaired, but SAMP8 mice produced significantly more morphologically abnormal embryos than controls (27.03% in SAMP8 vs. 1.22% in controls; p < 0.001). Our findings suggest telomere dysfunction in SAMP8 females, at the time of reproductive senescence.


Subject(s)
Infertility , Telomerase , Male , Female , Mice , Animals , Telomerase/genetics , Telomerase/metabolism , Aging/genetics , Fertility/physiology , Telomere/metabolism
5.
Curr Opin Obstet Gynecol ; 34(3): 151-158, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35645014

ABSTRACT

PURPOSE OF REVIEW: Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS: New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY: Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.


Subject(s)
Infertility, Female , Premature Birth , Aging/genetics , Female , Humans , Infant, Newborn , Pregnancy , Reproduction , Telomere
6.
Reprod Biomed Online ; 44(6): 1090-1100, 2022 06.
Article in English | MEDLINE | ID: mdl-35397997

ABSTRACT

RESEARCH QUESTION: How do age and normo- or oligoasthenozoospermia affect telomere length dynamics in spermatozoa and blood? DESIGN: Sperm and blood samples were collected from a cohort of 37 men aged 25 and under and 40 men aged 40 and over, with either normozoospermia (NZ) or oligoasthenozoospermia (OAZ). Telomere length was evaluated using quantitative fluorescence in-situ hybridization. Telomerase mRNA (TERC and TERT) and shelterin (TRF1) gene expression were analysed using quantitative real-time polymerase chain reaction. TRF1 protein immunoreactivity was also evaluated using immunofluorescence. RESULTS: Mean sperm telomere length (STL) increased with age in the NZ group; older NZ men accumulated the longest telomeres (P < 0.001). In peripheral blood mononuclear cells (PBMC), mean telomere length decreased with age in NZ groups, although not reaching statistical significance. Interestingly, the younger OAZ group had the shortest mean telomere length (versus young NZ, P = 0.0081; versus old NZ, P = 0.0116; versus old OAZ, P = 0.0009) and accumulated the highest percentage of short telomeres compared with the other groups (overall P = 0.0017). Analysis of TERC and TERT mRNA expression in spermatozoa and PBMC did not show significant differences among groups. Statistically significant positive correlations were found between STL and seminal parameters in younger NZ men (P = 0.009 for sperm count and P = 0.007 for total progressive motility). Protein immunoreactivity of TRF1 in blood was not significantly different in all groups analysed. CONCLUSIONS: The OAZ group did not show the increase of STL with age that is seen in NZ individuals, suggesting that telomere length elongation mechanisms fail in OAZ patients. In PBMC, younger OAZ individuals showed significantly shorter mean telomere length, suggesting that this parameter could be a good biomarker of OAZ in younger OAZ patients. Telomerase gene and TRF1 mRNA expression and TRF1 protein immunoreactivity did not differ significantly between groups, and so these factors cannot be used as OAZ biomarkers.


Subject(s)
Telomerase , Telomeric Repeat Binding Protein 1 , Adult , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , RNA, Messenger/genetics , Spermatozoa/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
7.
Mech Ageing Dev ; 198: 111541, 2021 09.
Article in English | MEDLINE | ID: mdl-34245740

ABSTRACT

Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.


Subject(s)
Aging , Cellular Senescence/physiology , Genitalia , Gonadal Steroid Hormones/metabolism , Infertility , Oocytes/physiology , Spermatozoa/physiology , Telomere Homeostasis/physiology , Aging/pathology , Aging/physiology , Female , Genitalia/metabolism , Genitalia/physiopathology , Humans , Infertility/etiology , Infertility/physiopathology , Male , Reproduction/physiology
8.
Yale J Biol Med ; 93(4): 561-569, 2020 09.
Article in English | MEDLINE | ID: mdl-33005120

ABSTRACT

The trend in our society to delay procreation increases the difficulty to conceive spontaneously. Thus, there is a growing need to use assisted reproduction technologies (ART) to form a family. With advanced maternal age, ovaries not only produce a lower number of oocytes after ovarian stimulation but also a lower quality-mainly aneuploidies-requiring further complex analysis to avoid complications during implantation and pregnancy. Although there are different options to have a child at advanced maternal age (like donor eggs), this is not the preferred choice for most patients. Unless women had cryopreserved their eggs at a younger age, reproductive medicine should try to optimize their opportunities to become pregnant with their own oocytes, when chances of success are reasonable. Aging has many causes, but telomere attrition is ultimately one of the main pathways involved in this process. Several reports link telomere biology and reproduction, but the molecular reasons for the rapid loss of ovarian function at middle age are still elusive. This review will focus on the knowledge acquired during the last years about ovarian aging and disease, both in mouse models of reproductive senescence and in humans with ovarian failure, and the implication of telomeres in this process. In addition, the review will discuss recent results on ovarian rejuvenation, achieved with stem cell therapies that are currently under study, or ovarian reactivation by tissue fragmentation and the attempts to generate oocytes in vitro.


Subject(s)
Ovary , Telomere , Aging/genetics , Animals , Female , Humans , Mice , Pregnancy , Rejuvenation , Reproduction , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...