Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Indian J Clin Biochem ; 36(4): 485-491, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34177138

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global health problem, India being the second most affected country. The kinetics of antibody response to SARS-CoV-2 in Indian population is not studied yet. To understand serological response in relation to age, gender, time period and severity of disease, Roche Elecsys anti-SARS-CoV-2 test was used which analysed both IgM and IgG. One hundred and three COVID-19 patients were enrolled. Seropositivity was seen in 64% of patients, with 33% at ≤ 7 days, 62% between 8 and 15 days and 81% at ≥ 16 days from the time of admission. Men (65%) showed higher antibody response than women (59%), whereas no difference was observed in seropositivity with respect to age of the patients. Dynamics of antibody responses revealed individual variations. Patients in ICU had higher antibody reactivity with 67% positivity as compared to 60% positivity in non-ICU patients. Kinetics of antibody response during COVID-19 disease varied in relation to gender, age, time period and severity and these factors might play an important role in treatment and control of COVID-19.

3.
Microbiol Immunol ; 64(11): 737-746, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32930410

ABSTRACT

An important toxin-antitoxin (TA) system hok/sok, encoded by R1 plasmid of Escherichia coli, is involved in the post segregation killing of cells that have lost the plasmid. The lethal properties of hok protein have been utilized for the environmental containment of microbes and the development of potential vaccine candidates. This study aimed to demonstrate the potent anti-microbial property of a 19 amino acid (AA) long N-terminal fragment of hok peptide. This was accomplished by designing a conditional suicide system based on hok gene expression cloned in an anhydrotetracycline (aTc) inducible vector - pASK75. Heat shock and electroporation were utilized for the transformation of Escherichia coli and Vibrio cholerae cells, respectively. The minimal induction concentration (MId C) of aTc, determined by analyzing the expression of green fluorescent protein cloned separately into pASK75 vector, was 30 ng/mL. As hok gene was synthesized de novo (using recombinant polymerase chain reaction) in our study, various random sized hok fragments were generated (as a result of the error-prone nature of Taq polymerase). The smallest hok fragment able to bring about effective antimicrobial killing was a 19 AA long N-terminal fragment of hok having the wild type sequence, except for the carboxy terminus AA residue. The MId C of aTc in our experiments was 6-fold lower than previously reported, making our bacterial clones suitable for use in mammalian systems as potential vaccine candidates. Based on our experiments, we hypothesize the 19 AA long N-terminal fragment of hok peptide to be the smallest possible hok fragment sufficient to bring about effective antimicrobial killing.


Subject(s)
Amino Acids/metabolism , Anti-Bacterial Agents/pharmacology , Cloning, Molecular , Genetic Vectors/genetics , Pore Forming Cytotoxic Proteins/pharmacology , Tetracyclines/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Green Fluorescent Proteins/genetics , Plasmids/genetics , Recombinant Proteins , Vibrio cholerae
SELECTION OF CITATIONS
SEARCH DETAIL
...