Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Chem Sci ; 10(32): 7649-7658, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31588316

ABSTRACT

The free energy landscape of catalytic intermediates in the two-electron reduction of proton donors and/or CO2 to H2, CO and HCO2 - is mapped with density functional theory to screen catalyst candidates from a library of different transition metals and ligands. The goal is to minimize the free energy corrugations between reactants, catalytic intermediates and each desired product, simultaneously screening against intermediates with low free energy that would be traps, and against necessary intermediates with high free energy. Catalysts are initially screened for those with: (a) standard state free energy of the metal hydride intermediate ergoneutral with HCO2 -, which is the lowest energy product with weak proton donors, and (b) standard free energy of the metal carbonyl intermediate sufficiently high to avoid trapping. The design method is tested on a diverse range of ligands including cyclopentadienyl, polypyridyl, amino, phosphino and carbonyl ligands, around three earth-abundant d6 transition metal ions, Mn(i), Fe(ii) and Co(iii), using the BP86 density functional, the double-zeta 6-31+G* basis, LANL2DZ effective core potential on the metals and SMD polarizable continuum model for acetonitrile as solvent, which have previously provided chemically accurate values of several redox potentials, pK a's and ligand exchange equilibria for transition metal complexes. Among the 36 complexes screened, an Fe(ii) center ligated to two bipyridines and a pyridine with a solvent-bound sixth coordination site for hydride formation from phenol as the proton donor is identified as a promising candidate for ergoneutral hydride formation without trapping by CO. The redox-active bipyridine ligands are predicted to provide near ergoneutral sites for accumulating the two electrons needed to form the hydride. To test the predictions, an Fe(ii) complex was prepared with the desired ligand environment using a pentadentate ligand to prevent ligand exchange. The synthesized complex was indeed found to be active towards electrocatalytic proton reduction as well as CO2 reduction at the predicted redox potentials with no trapping by CO. However, contrary to the in silico predictions, we found electrochemical evidence of CO2 binding after the first reduction leading to CO production. Mapping the free energies of key catalytic intermediates such as the metal hydride and metal carbonyl species by using density functional theory (DFT) serves as a first step in catalyst screening spanning large libraries of metals and ligands. In order to screen against all the intermediates in the catalytic pathway, such as reduced metal-bound CO2 intermediates, further refinement and validation of the DFT methods are needed.

2.
Inorg Chem ; 56(14): 8326-8333, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28640601

ABSTRACT

The one-electron reduction of [CpRu(bpy)NCCH3]PF6 (Cp = cyclopentadienyl; bpy = 2,2'-bipyridine), abbreviated as [Ru-S]+, where S = CH3CN, in CO2-saturated acetonitrile initiates a cascade of rapid electrochemical and chemical steps (ECEC) at an electrode potential of ca. 100 mV positive of the first reduction of the ruthenium complex. The overall two-electron process leads to the generation of a CO-bound ruthenium complex, [Ru-CO]+, and carbonate, as independently confirmed by NMR spectroscopy. Simulations of the cyclic voltammograms using DigiElch together with density functional theory based calculations reveal that the singly reduced ruthenium complex [Ru-S]0 binds CO2 at a rate of ca. 105 M-1 s-1 at almost zero driving force. Subsequent to CO2 binding, all of the steps leading up to deoxygenation are highly exergonic and rapid. A model of the potential energy profile of the CO2 approach to the Ru center in the singly reduced manifold reveals a direct correlation between the reactivity toward CO2 and the nucleophilicity at the metal center influenced by different ligand environments. Through the binding of CO2 after the first reduction, overpotentials associated with consecutive electrochemical reductions are avoided. This work therefore provides an important design principle for engineering transition-metal complexes to activate CO2 under low driving forces.

3.
J Am Chem Soc ; 139(12): 4540-4550, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28263588

ABSTRACT

The dicationic complex [CpCo(azpy)(CH3CN)](ClO4)2 1 (azpy = phenylazopyridine) exhibits a reversible two-electron reduction at a very mild potential (-0.16 V versus Fc0/+) in acetonitrile. This behavior is not observed with the analogous bipyridine and pyrazolylpyridine complexes (3 and 4), which display an electrochemical signature typical of CoIII systems: two sequential one-electron reductions to CoII at -0.4 V and CoI at -1.0 to -1.3 V versus Fc0/+. The doubly reduced, neutral complex [CpCo(azpy)] 2 is isolated as an air-stable, diamagnetic solid via chemical reduction with cobaltocene. Crystallographic and spectroscopic characterization together with experimentally calibrated density functional theory calculations illuminate the key structural and electronic changes that occur upon reduction of 1 to 2. The electrochemical potential inversion observed with 1 is attributed to effective overlap between the metal d and the low-energy azo π* orbitals in the intermediary redox state and additional stabilization of 2 from structural reorganization, leading to a two-electron reduction. This result serves as a key milestone in the quest for two-electron transformations with mononuclear first-row transition metal complexes at mild potentials.

4.
J Am Chem Soc ; 139(2): 738-748, 2017 01 18.
Article in English | MEDLINE | ID: mdl-27997178

ABSTRACT

Octahedral ruthenium complexes [RuX(CNN)(dppb)] (1, X = Cl; 2, X = H; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) are highly active for the transfer hydrogenation of ketones with isopropanol under ambient conditions. Turnover frequencies of 0.88 and 0.89 s-1 are achieved at 25 °C using 0.1 mol % of 1 or 2, respectively, in the presence of 20 equiv of potassium t-butoxide relative to catalyst. Electrochemical studies reveal that the Ru-hydride 2 is oxidized at low potential (-0.80 V versus ferrocene/ferrocenium, Fc0/+) via a chemically irreversible process with concomitant formation of dihydrogen. Complexes 1 and 2 are active for the electrooxidation of isopropanol in the presence of strong base (potassium t-butoxide) with an onset potential near -1 V versus Fc0/+. By cyclic voltammetry, fast turnover frequencies of 3.2 and 4.8 s-1 for isopropanol oxidation are achieved with 1 and 2, respectively. Controlled potential electrolysis studies confirm that the product of isopropanol electrooxidation is acetone, generated with a Faradaic efficiency of 94 ± 5%.

5.
ACS Appl Mater Interfaces ; 8(36): 23763-73, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27548719

ABSTRACT

We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions ≥ 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.

6.
ACS Appl Mater Interfaces ; 8(23): 14596-603, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27196628

ABSTRACT

Atomic layer deposited (ALD) TiO2 protection layers may allow for the development of both highly efficient and stable photoanodes for solar fuel synthesis; however, the very different conductivities and photovoltages reported for TiO2-protected silicon anodes prepared using similar ALD conditions indicate that mechanisms that set these key properties are, as yet, poorly understood. In this report, we study hydrogen-containing annealing treatments and find that postcatalyst-deposition anneals at intermediate temperatures reproducibly yield decreased oxide/silicon interface trap densities and high photovoltage. A previously reported insulator thickness-dependent photovoltage loss in metal-insulator-semiconductor Schottky junction photoanodes is suppressed. This occurs simultaneously with TiO2 crystallization and an increase in its dielectric constant. At small insulator thickness, a record for a Schottky junction photoanode of 623 mV photovoltage is achieved, yielding a photocurrent turn-on at 0.92 V vs NHE or -0.303 V with respect to the thermodynamic potential for water oxidation.

7.
ACS Appl Mater Interfaces ; 8(20): 13140-9, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27096845

ABSTRACT

Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.

8.
Inorg Chem ; 55(4): 1623-32, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26835983

ABSTRACT

The ruthenium hydride [RuH(CNN)(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°(298 K) = -3.1 kcal/mol measured by (1)H NMR in tetrahydrofuran-d8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru-hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N-H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru-H hydride transfer to CO2 followed by rotation of the resulting N-H-stabilized formate to a Ru-O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.

9.
Nat Mater ; 15(1): 99-105, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26480231

ABSTRACT

Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630 mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+)n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.

10.
Chem Sci ; 7(1): 117-127, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-29861972

ABSTRACT

A series of square-planar nickel hydride complexes supported by bis(phosphinite) pincer ligands with varying substituents (-OMe, -Me, and -Bu t ) on the pincer backbone have been synthesized and completely characterized by NMR spectroscopy, IR spectroscopy, elemental analysis, and X-ray crystallography. Their cyclic voltammograms show irreversible oxidation peaks (peak potentials from 101 to 316 mV vs. Fc+/Fc) with peak currents consistent with overall one-electron oxidations. Chemical oxidation by the one-electron oxidant Ce(NBu4)2(NO3)6 was studied by NMR spectroscopy, which provided quantitative evidence for post-oxidative H2 evolution leading to a solvent-coordinated nickel(ii) species with the pincer backbone intact. Bulk electrolysis of the unsubstituted nickel hydride (3a) showed an overall one-electron stoichiometry and gas chromatographic analysis of the headspace gas after electrolysis further confirmed stoichiometric production of dihydrogen. Due to the extremely high rate of the post-oxidative chemical process, electrochemical simulations have been used to establish a lower limit of the bimolecular rate constant (kf > 107 M-1 s-1) for the H2 evolution step. To the best of our knowledge, this is the fastest known oxidative H2 evolution process observed in transition metal hydrides. Quantum chemical calculations based on DFT indicate that the one-electron oxidation of the nickel hydride complex provides a strong chemical driving force (-90.3 kcal mol-1) for the production of H2 at highly oxidizing potentials.

11.
J Am Chem Soc ; 135(38): 14299-305, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24044700

ABSTRACT

Ruthenium transfer hydrogenation catalysts physisorbed onto edge-plane graphite electrodes are active electrocatalysts for the oxidation of alcohols. Electrooxidation of CH3OH (1.23 M) in a buffered aqueous solution at pH 11.5 with [(η(6)-p-cymene)(η(2)-N,O-(1R,2S)-cis-1-amino-2-indanol)]Ru(II)Cl (2) on edge-plane graphite exhibits an onset current at 560 mV vs NHE. Koutecky-Levich analysis at 750 mV reveals a four-electron oxidation of methanol with a rate of 1.35 M(-1) s(-1). Mechanistic investigations by (1)H NMR, cyclic voltammetry, and desorption electrospray ionization mass spectrometry indicate that the electroxidation of methanol to generate formate is mediated by surface-supported Ru-oxo complexes.

12.
Langmuir ; 29(18): 5383-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23551032

ABSTRACT

A terminal alkyne is immobilized rapidly into a full monolayer by squishing a small volume of a solution of the alkyne between an azide-modified surface and a copper plate. The monolayer is covalently attached to the surface through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, and the coverages of the immobilized electroactive alkyne species are quantified by cyclic voltammetry. A reaction time of less than 20 s is possible with no other reagents required. The procedure is effective under aerobic conditions using either an aqueous or aprotic organic solution of the alkyne (1-100 mM).


Subject(s)
Alkynes/chemistry , Azides/chemistry , Copper/chemistry , Catalysis , Cyclization , Oxidation-Reduction , Time Factors
13.
J Am Chem Soc ; 135(3): 1110-6, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23301920

ABSTRACT

Tailoring the surface and interfacial properties of inexpensive and abundant carbon materials plays an increasingly important role for innovative applications including those in electrocatalysis, energy storage, gas separations, and composite materials. Described here is the novel preparation and subsequent use of gaseous iodine azide for the azide modification of carbon surfaces. In-line generation of gaseous iodine azide from iodine monochloride vapor and solid sodium azide is safe and convenient. Immediate treatment of carbon surfaces with this gaseous stream of iodine azide provides a highly reproducible, selective, and scalable azide functionalization that minimizes waste and reduces deleterious side reactions. Among the possible uses of azide-modified surfaces, they serve as versatile substrates for the attachment of additional functionality by coupling with terminal alkynes under the mild copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. For instance, coupling ethynylferrocene to azide-modified glassy carbon surfaces achieves ferrocene coverage up to 8 × 10(13) molecules/cm(2) by voltammetric and XPS analyses. The 1,2,3-triazole linker formed during the CuAAC reaction is robust and hydrolytically stable in both aqueous 1 M HClO(4) and 1 M NaOH for at least 12 h at 100 °C.


Subject(s)
Azides/chemistry , Carbon/chemistry , Gases/chemistry , Surface Properties
14.
ACS Nano ; 6(11): 9920-31, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23035989

ABSTRACT

We present a method to fabricate individually addressable junctions of self-assembled monolayers (SAMs) that builds on previous studies which have shown that soft conductive polymer top contacts virtually eliminate shorts through the SAMs. We demonstrate devices with nanoscale lateral dimensions, representing an order of magnitude reduction in device area, with high yield and relatively low device-to-device variation, improving several features of previous soft contact devices. The devices are formed in pores in an inorganic dielectric layer with features defined by e-beam lithography and dry etching. We replace the aqueous PEDOT:PSS conductive polymer used in prior devices with Aedotron P, a low-viscosity, amphiphilic polymer, allowing incorporation of self-assembled monolayers with either hydrophobic or hydrophilic termination with the same junction geometry and materials. We demonstrate the adaptability of this new design by presenting transport measurements on SAMs composed of alkanethiols with methyl, thiol, carboxyl, and azide terminations. We establish that the observed room-temperature tunnel barrier is primarily a function of monolayer thickness, independent of the terminal group's hydrophilicity. Finally, we investigate the temperature dependence of transport and show that the low-temperature behavior is based on the energy distribution of sites from which carriers can tunnel between the polymer and gold contacts, as described by a model of variable-range hopping transport in a disordered conductor.


Subject(s)
Crystallization/methods , Microelectrodes , Nanostructures/chemistry , Nanostructures/ultrastructure , Polymers/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
15.
Langmuir ; 27(16): 9928-35, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21721567

ABSTRACT

A convenient, laboratory-scale method for the vapor deposition of dense siloxane monolayers onto oxide substrates was demonstrated. This method was studied and optimized at 110 °C under reduced pressure with the vapor of tetradecyltris(deuteromethoxy)silane, (CD(3)O)(3)Si(CH(2))(13)CH(3), and water from the dehydration of MgSO(4)·7H(2)O. Ellipsometric thicknesses, water contact angles, Fourier transform infrared (FTIR) spectroscopy, and electrochemical capacitance measurements were used to probe monolayer densification. The CD(3) stretching mode in the FTIR spectrum was monitored as a function of the deposition time and amounts of silane and water reactants. This method probed the unhydrolyzed methoxy groups on adsorbed silanes. Excess silane and water were necessary to achieve dense, completely hydrolyzed monolayers. In the presence of sufficient silane, an excess of water above the calculated stoichiometric amount was necessary to hydrolyze all methoxy groups and achieve dense monolayers. The excess water was partially attributed to the reversibility of the hydrolysis of the methoxy groups.

16.
Nat Mater ; 10(7): 539-44, 2011 Jun 19.
Article in English | MEDLINE | ID: mdl-21685904

ABSTRACT

A leading approach for large-scale electrochemical energy production with minimal global-warming gas emission is to use a renewable source of electricity, such as solar energy, to oxidize water, providing the abundant source of electrons needed in fuel synthesis. We report corrosion-resistant, nanocomposite anodes for the oxidation of water required to produce renewable fuels. Silicon, an earth-abundant element and an efficient photovoltaic material, is protected by atomic layer deposition (ALD) of a highly uniform, 2 nm thick layer of titanium dioxide (TiO(2)) and then coated with an optically transmitting layer of a known catalyst (3 nm iridium). Photoelectrochemical water oxidation was observed to occur below the reversible potential whereas dark electrochemical water oxidation was found to have low-to-moderate overpotentials at all pH values, resulting in an inferred photovoltage of ~550 mV. Water oxidation is sustained at these anodes for many hours in harsh pH and oxidative environments whereas comparable silicon anodes without the TiO(2) coating quickly fail. The desirable electrochemical efficiency and corrosion resistance of these anodes is made possible by the low electron-tunnelling resistance (<0.006 Ω cm(2) for p(+)-Si) and uniform thickness of atomic-layer deposited TiO(2).

17.
J Am Chem Soc ; 133(11): 3696-9, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21366244

ABSTRACT

A Cu(I) complex of 3-ethynyl-phenanthroline covalently immobilized onto an azide-modified glassy carbon surface is an active electrocatalyst for the four-electron (4-e) reduction of O(2) to H(2)O. The rate of O(2) reduction is second-order in Cu coverage at moderate overpotential, suggesting that two Cu(I) species are necessary for efficient 4-e reduction of O(2). Mechanisms for O(2) reduction are proposed that are consistent with the observations for this covalently immobilized system and previously reported results for a similar physisorbed Cu(I) system.


Subject(s)
Copper/chemistry , Electrochemistry/methods , Oxygen/chemistry , Catalysis , Kinetics
18.
Langmuir ; 25(16): 9473-9, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19419180

ABSTRACT

We report the selective removal of gold from the tips of germanium nanowires (GeNWs) grown by chemical vapor deposition on gold nanoparticles (AuNPs). Selective removal was accomplished by aqueous hydrochloric acid solutions containing either potassium triiodide or iodine. Measurement of the residual number of gold atoms on the GeNW samples using inductively coupled plasma-mass spectrometry shows that 99% of the gold was removed. Photoemission spectroscopy shows that the germanium surfaces of these samples were not further oxidized after treatment with these liquid etchants. Auger electron spectroscopy shows that AuNPs that did not yield GeNWs contain germanium and also that the addition of gaseous HCl to GeH(4) during GeNW growth increased the selectivity of germanium deposition to the AuNPs.

19.
Langmuir ; 25(11): 6517-21, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19379005

ABSTRACT

The close proximity of two individually addressable electrodes in an interdigitated array provides a unique platform for electrochemical study of multicatalytic processes. Here, we report a "plug-and-play" approach to control the underlying self-assembled monolayer and the electroactive species on each individually addressable electrode of an interdigitated array. The method presented here uses selective anodic desorption of a monolayer from one of the individually addressable electrodes and rapid formation of a different self-assembled monolayer on the freshly cleaned electrode. We illustrate this strategy by introducing variations in the length of the linker to the electroactive species in the self-assembled monolayer, which determines the rate of electron transfer. In order to separate the assembly of the monolayer from the choice of the electroactive species, we use CuI-catalyzed triazole formation ("click" chemistry) to covalently attach an acetylene-terminated electroactive species to an azide-terminated thiol monolayer selectively on each electrode. The resulting variations in the electron-transfer rate to surface-attached ferrocene and in the rate of catalytic oxidation of ascorbate by the ferrocenium/ferrocene couple demonstrate an application of this approach.


Subject(s)
Electrodes , Sulfhydryl Compounds/chemistry , Adsorption , Surface Properties
20.
Nanotechnology ; 19(48): 485705, 2008 Dec 03.
Article in English | MEDLINE | ID: mdl-21836312

ABSTRACT

We demonstrate the p-type doping of Ge nanowires (NWs) and p-n junction arrays in a scalable vertically aligned structure with all processing performed below 400 °C. These structures are advantageous for the large scale production of parallel arrays of devices for nanoelectronics and sensing applications. Efficient methods for the oxide encapsulation, chemical mechanical polishing and cleaning of vertical Ge NWs embedded in silicon dioxide are reported. Approaches for avoiding the selective oxidation and dissolution of Ge NWs in aqueous solutions during chemical mechanical polishing and cleaning of oxide-encapsulated Ge NWs are emphasized. NWs were doped through the epitaxial deposition of a B-doped shell and transport measurements indicate doping concentrations on the order of 10(19) cm(-3).

SELECTION OF CITATIONS
SEARCH DETAIL
...