Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 407, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37626328

ABSTRACT

Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.


Subject(s)
Droughts , Plant Development , Drought Resistance , Plant Growth Regulators , Acclimatization
2.
BMC Plant Biol ; 23(1): 60, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36710321

ABSTRACT

BACKGROUND: Plant growth promoting rhizobacteria (PGPR), such as Bradyrhizobium japonicum IRAT FA3, are able to improve seed germination and plant growth under various biotic and abiotic stress conditions, including high salinity stress. PGPR can affect plants' responses to stress via multiple pathways which are often interconnected but were previously thought to be distinct. Although the overall impacts of PGPR on plant growth and stress tolerance have been well documented, the underlying mechanisms are not fully elucidated. This work contributes to understanding how PGPR promote abiotic stress by revealing major plant pathways triggered by B. japonicum under salt stress. RESULTS: The plant growth-promoting rhizobacterial (PGPR) strain Bradyrhizobium japonicum IRAT FA3 reduced the levels of sodium in Arabidopsis thaliana by 37.7%. B. japonicum primed plants as it stimulated an increase in jasmonates (JA) and modulated hydrogen peroxide production shortly after inoculation. B. japonicum-primed plants displayed enhanced shoot biomass, reduced lipid peroxidation and limited sodium accumulation under salt stress conditions. Q(RT)-PCR analysis of JA and abiotic stress-related gene expression in Arabidopsis plants pretreated with B. japonicum and followed by six hours of salt stress revealed differential gene expression compared to non-inoculated plants. Response to Desiccation (RD) gene RD20 and reactive oxygen species scavenging genes CAT3 and MDAR2 were up-regulated in shoots while CAT3 and RD22 were increased in roots by B. japonicum, suggesting roles for these genes in B. japonicum-mediated salt tolerance. B. japonicum also influenced reductions of RD22, MSD1, DHAR and MYC2 in shoots and DHAR, ADC2, RD20, RD29B, GTR1, ANAC055, VSP1 and VSP2 gene expression in roots under salt stress. CONCLUSION: Our data showed that MYC2 and JAR1 are required for B. japonicum-induced shoot growth in both salt stressed and non-stressed plants. The observed microbially influenced reactions to salinity stress in inoculated plants underscore the complexity of the B. japonicum jasmonic acid-mediated plant response salt tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/physiology , Stress, Physiological , Sodium/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328480

ABSTRACT

Chloroplast biogenesis depends on a complex transcriptional program involving coordinated expression of plastid and nuclear genes. In particular, photosynthesis-associated plastid genes are expressed by the plastid-encoded polymerase (PEP) that undergoes a structural rearrangement during chloroplast formation. The prokaryotic-type core enzyme is rebuilt into a larger complex by the addition of nuclear-encoded PEP-associated proteins (PAP1 to PAP12). Among the PAPs, some have been detected in the nucleus (PAP5 and PAP8), where they could serve a nuclear function required for efficient chloroplast biogenesis. Here, we detected PAP8 in a large nuclear subcomplex that may include other subunits of the plastid-encoded RNA polymerase. We have made use of PAP8 recombinant proteins in Arabidopsis thaliana to decouple its nucleus- and chloroplast-associated functions and found hypomorphic mutants pointing at essential amino acids. While the origin of the PAP8 gene remained elusive, we have found in its sequence a micro-homologous domain located within a large structural homology with a rhinoviral RNA-dependent RNA polymerase, highlighting potential RNA recognition motifs in PAP8. PAP8 in vitro RNA binding activity suggests that this domain is functional. Hence, we propose that the acquisition of PAPs may have occurred during evolution by different routes, including lateral gene transfer.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Plant , Mutation , Nuclear Proteins/genetics , Plastids/metabolism , RNA Recognition Motif
4.
EMBO J ; 39(22): e104941, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33001465

ABSTRACT

The initial greening of angiosperms involves light activation of photoreceptors that trigger photomorphogenesis, followed by the development of chloroplasts. In these semi-autonomous organelles, construction of the photosynthetic apparatus depends on the coordination of nuclear and plastid gene expression. Here, we show that the expression of PAP8, an essential subunit of the plastid-encoded RNA polymerase (PEP) in Arabidopsis thaliana, is under the control of a regulatory element recognized by the photomorphogenic factor HY5. PAP8 protein is localized and active in both plastids and the nucleus, and particularly required for the formation of late photobodies. In the pap8 albino mutant, phytochrome-mediated signalling is altered, degradation of the chloroplast development repressors PIF1/PIF3 is disrupted, HY5 is not stabilized, and the expression of the photomorphogenesis regulator GLK1 is impaired. PAP8 translocates into plastids via its targeting pre-sequence, interacts with the PEP and eventually reaches the nucleus, where it can interact with another PEP subunit pTAC12/HMR/PAP5. Since PAP8 is required for the phytochrome B-mediated signalling cascade and the reshaping of the PEP activity, it may coordinate nuclear gene expression with PEP-driven chloroplastic gene expression during chloroplast biogenesis.


Subject(s)
Acid Phosphatase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Chloroplasts/metabolism , Morphogenesis/physiology , Plastids/genetics , Plastids/metabolism , Acid Phosphatase/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Chloroplasts/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Plant , Light , Organelle Biogenesis , Phytochrome/metabolism , Plants, Genetically Modified , Signal Transduction , Transcription Factors , Transcription, Genetic
5.
Methods Mol Biol ; 1829: 253-271, 2018.
Article in English | MEDLINE | ID: mdl-29987727

ABSTRACT

Plastids of plant and algae cells are of endosymbiotic origin. They possess their own genome and a sophisticated protein machinery to express it. Studies over the recent years uncovered that the regulation of plastid gene expression is highly complex involving a multiplicity of regulatory protein factors that are mostly imported from the cytosol. Proper expression of the chloroplast genome in coordination with nuclear genome was found to be absolutely essential for efficient growth and development of plants especially during early steps of photomorphogenesis, but also at later stages of the plant life cycle. Protein factors being responsible for such essential steps, therefore, are highly interesting for fundamental science as well as for industrial applications targeting crop improvement and yield increase. Nevertheless, many proteins involved in regulation of plastid gene expression are still unidentified and/or uncharacterized. This asks for appropriate methods to analyze this special subproteome. Here, we describe suitable methods that proved to be successful in the analysis of the plastid subproteome of DNA/RNA-binding proteins.


Subject(s)
Chloroplasts/metabolism , DNA-Binding Proteins/metabolism , Plastids/metabolism , Proteome , Proteomics , RNA-Binding Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Plant Proteins/analysis , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...