Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Microb Pathog ; 126: 292-297, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30414838

ABSTRACT

Molecular detection of microorganisms requires releasing DNA from cells. However, since certain microbial organisms are refractory to lysis by chemical or enzymatic methods, mechanical lysis by bead-beating is typically employed to disrupt difficult-to-lyse microbes. A newly developed chemical lysis method called sporeLYSE enables release of DNA from difficult-to-lyse microbes without bead-beating. The sporeLYSE method was compared to bead-beating and an alkaline/detergent lysis solution for releasing DNA from microbes grown in vitro, including surrogates of Category A bioterrorism agents. sporeLYSE released 83% to 100% of DNA from Mycobacterium smegmatis, Francisella philomiragia, Yersinia enterocolitica, Bacillus thuringiensis, Pseudomonas aeruginosa, Moraxella catarrhalis and Klebsiella pneumoniae. qPCR results indicated that sporeLYSE extracted an equal or greater amount of DNA than either bead-beating or alkaline/detergent lysis from Gram-positive and Gram-negative bacteria. When sporeLYSE was used to extract DNA from saliva and sputum spiked with M. smegmatis and M. tuberculosis, respectively, the qPCR Ct values were 4-8 cycles lower than those for extractions via alkaline/detergent lysis and heat. Mean Ct values for sporesLYSE extractions from spores of Clostridium difficile and C. botulinum were approximately two cycles lower than those of MagNA Pure DNA extractions. Our results suggest that sporeLYSE is an easy-to-use liquid reagent that can efficiently release large amounts of DNA from a variety of bacteria, including spores.


Subject(s)
Bacteria/chemistry , Bacteriological Techniques/methods , DNA, Bacterial/isolation & purification , Bacteria/genetics , Cell Wall/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Detergents , Molecular Biology/methods , Real-Time Polymerase Chain Reaction/methods , Saliva/microbiology , Spores, Bacterial/chemistry , Spores, Bacterial/genetics , Sputum/microbiology
3.
Mol Cell Probes ; 29(6): 461-467, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26134133

ABSTRACT

To minimize specimen volume, handling and testing time, we have developed two TaqMan(®) multiplex real-time PCR (rtPCR) assays to detect staphylococcal enterotoxins A-E and Toxic Shock Syndrome Toxin production genes directly from clinical patient stool specimens utilizing a novel lysis extraction process in parallel with the Roche MagNA Pure Compact. These assays are specific, sensitive and reliable for the detection of the staphylococcal enterotoxin encoding genes and the tst1 gene from known toxin producing strains of Staphylococcus aureus. Specificity was determined by testing a total of 47 microorganism strains, including 8 previously characterized staphylococcal enterotoxin producing strains against each rtPCR target. Sensitivity for these assays range from 1 to 25 cfu per rtPCR reaction for cultured isolates and 8-20 cfu per rtPCR for the clinical stool matrix.


Subject(s)
Enterotoxins/genetics , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Staphylococcal Infections/diagnosis , Staphylococcus aureus/metabolism , Automation, Laboratory , Feces/microbiology , Humans , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics
4.
Foodborne Pathog Dis ; 9(11): 1028-36, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23009170

ABSTRACT

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging pathogens with the potential to cause serious illness and impact public health due to diagnostic challenges. Between 2005 and 2010, the Wadsworth Center (WC), the public health laboratory of the New York State (NYS) Department of Health, requested that Shiga toxin enzyme immunoassay (EIA)-positive stool enrichment broths and/or stool specimens be submitted by clinical and commercial reference laboratories testing NYS patient specimens. A total of 798 EIA-positive specimens were received for confirmation and serotyping, and additionally a subset of STEC was assessed for the presence of six virulence genes (stx1, stx2, eaeA, hlyA, nleA, and nleB) by real-time polymerase chain reaction. We confirmed 591 specimens as STEC, 164 (28%) as O157 STEC, and 427 (72%) as non-O157 STEC. Of the non-O157 STEC serogroups identified, over 70% were O103, O26, O111, O45, O121, or O145. During this time period, WC identified and characterized a total of 1282 STEC received as E. coli isolates, stool specimens, or EIA broths. Overall, the STEC testing identified 59% as O157 STEC and 41% as non-O157 STEC; however, out of 600 isolates submitted to the WC as E. coli cultures, 543 (90%) were identified as O157 STEC. This report summarizes a 6-year study utilizing enhanced STEC testing that resulted in increased identification and characterization of non-O157 STEC in NYS. Continued utilization of enhanced STEC testing may lead to effective and timely outbreak response and improve monitoring of trends in STEC disease epidemiology.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Algorithms , DNA, Bacterial/genetics , Escherichia coli Infections/embryology , Feces/microbiology , Humans , Immunoenzyme Techniques , New York/epidemiology , Public Health , Real-Time Polymerase Chain Reaction , Retrospective Studies , Serotyping , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/immunology , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...