Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38854075

ABSTRACT

Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with extracting or expressing large numbers of individual venoms and venom-like molecules have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms". We employed programmable M13 hyperphage display to preserve critical disulfide-bonded structures for highly parallelized single-round biopanning with quantitation via high-throughput DNA sequencing. Our approach led to the discovery of Kunitz type domain containing proteins that target the human itch receptor Mas-related G protein-coupled receptor X4 (MRGPRX4), which plays a crucial role in itch perception. Deep learning-based structural homology mining identified two endogenous human homologs, tissue factor pathway inhibitor (TFPI) and serine peptidase inhibitor, Kunitz type 2 (SPINT2), which exhibit agonist-dependent potentiation of MRGPRX4. Highly multiplexed screening of animal venoms and metavenoms is therefore a promising approach to uncover new drug candidates.

2.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718132

ABSTRACT

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Subject(s)
Disease Models, Animal , Pruritus , Receptors, G-Protein-Coupled , Animals , Pruritus/metabolism , Pruritus/chemically induced , Pruritus/pathology , Pruritus/drug therapy , Humans , Receptors, G-Protein-Coupled/metabolism , Mice , HEK293 Cells , Phosphorylation/drug effects , Phosphates/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Prodrugs/pharmacology , Cryoelectron Microscopy
3.
Biology (Basel) ; 12(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37237568

ABSTRACT

Pruritus in the setting of cholestatic liver disease is difficult to treat and occurs in patients ranging in age from infancy to adulthood. Likely multifactorial in etiology, this symptom often involves multimodal therapy targeting several pathways and mechanisms proposed in the underlying etiology of cholestatic pruritus. Many patients in both the pediatric and adult populations continue to experience unrelenting pruritus despite maximal conventional therapy. Options are further limited in treating pediatric patients due to sparse data regarding medication safety and efficacy in younger patients. Conventional therapies for the treatment of cholestatic pruritus in children include ursodeoxycholic acid, cholestyramine, hydroxyzine, and rifampin. Certain therapies are more routinely used in the adult populations but with limited data available for use in child and adolescent patients, including opioid antagonists and selective serotonin reuptake inhibitors. Recently, ileal bile acid transport inhibitors have been shown to alleviate pruritus in many children with Alagille syndrome and progressive familial intrahepatic cholestasis and is an additional therapy available for consideration for these patients. Ultimately, surgical options such as biliary diversion or liver transplantation are considered in specific circumstances when medical therapies have been exhausted and pruritus remains debilitating. While further investigation regarding underlying etiologies and effective therapies are needed to better understand itch pathogenesis and treatment in pediatric cholestasis, current considerations beyond conventional management include the use of opioid antagonists, selective serotonin reuptake inhibitors, ileal bile acid transport inhibitors, and surgical intervention.

4.
Biochim Biophys Acta Mol Basis Dis ; 1867(8): 166153, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33895309

ABSTRACT

IsoBAs, stereoisomers of primary and secondary BAs, are found in feces and plasma of human individuals. BA signaling via the nuclear receptor FXR is crucial for regulation of hepatic and intestinal physiology/pathophysiology. AIM: Investigate the ability of BA-stereoisomers to bind and modulate FXR under physiological/pathological conditions. METHODS: Expression-profiling, luciferase-assays, fluorescence-based coactivator-association assays, administration of (iso)-BAs to WT and cholestatic mice. RESULTS: Compared to CDCA/isoCDCA, administration of DCA/isoDCA, UDCA/isoUDCA only slightly increased mRNA expression of FXR target genes; the induction was more evident looking at pre-mRNAs. Notably, almost 50% of isoBAs were metabolized to 3-oxo-BAs within 4 h in cell-based assays, making it difficult to study their actions. FRET-based real-time monitoring of FXR activity revealed that isoCDCA>CDCA stimulated FXR, and isoDCA and isoUDCA allowed fully activated FXR to be re-stimulated by a second dose of GW4064. In vivo co-administration of a single dose of isoBAs followed by GW4064 cooperatively activated FXR, as did feeding of UDCA in a background of endogenous FXR ligands. However, in animals with biliary obstruction and concomitant loss of intestinal BAs, UDCA was unable to increase intestinal Fgf15. In contrast, mice with an impaired enterohepatic circulation of BAs (Asbt-/-, Ostα-/-), administration of UDCA was still able to induce ileal Fgf15 and repress hepatic BA-synthesis, arguing that UDCA is only effective in the presence of endogenous FXR ligands. CONCLUSION: Secondary (iso)BAs cooperatively activate FXR in the presence of endogenous BAs, which is important to consider in diseases linked to disturbances in BA enterohepatic cycling.


Subject(s)
Bile Acids and Salts/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Caco-2 Cells , Cell Line , Cell Line, Tumor , Cholestasis/drug therapy , Cholestasis/metabolism , Disease Models, Animal , Fibroblast Growth Factors/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Ileum/drug effects , Ileum/metabolism , Isoxazoles/pharmacology , Ligands , Liver/drug effects , Liver/metabolism , Male , Mice , RNA, Messenger/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription Factors/metabolism
5.
J Allergy Clin Immunol ; 148(2): 506-522.e8, 2021 08.
Article in English | MEDLINE | ID: mdl-33617860

ABSTRACT

BACKGROUND: Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions. OBJECTIVES: Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus. METHODS: To identify novel MRGPR (ant)agonists, we screened a library of pharmacologically active compounds by utilizing a high-throughput calcium mobilization assay. The identified hit compounds were analyzed for their pseudoallergic and pruritogenic effects in mice and human. RESULTS: We found a class of commonly used drugs activating MRGPRX2 that, to a large extent, consists of antidepressants, antiallergic drugs, and antipsychotics. Three-dimensional pharmacophore modeling revealed structural similarities of the identified agonists, classifying them as cationic amphiphilic drugs. Mast cell activation was investigated by using the 3 representatively selected antidepressants clomipramine, paroxetine, and desipramine. Indeed, we were able to show a concentration-dependent activation and MRGPRX2-dependent degranulation of the human mast cell line LAD2 (Laboratory of Allergic Diseases-2). Furthermore, clomipramine, paroxetine, and desipramine were able to induce degranulation of human skin and murine peritoneal mast cells. These substances elicited dose-dependent scratching behavior following intradermal injection into C57BL/6 mice but less so in MRGPRB2-mutant mice, as well as wheal-and-flare reactions following intradermal injections in humans. CONCLUSION: Our results contribute to the characterization of structure-activity relationships and functionality of MRGPRX2 ligands and facilitate prediction of adverse reactions such as drug-induced pruritus to prevent severe drug hypersensitivity reactions.


Subject(s)
Antidepressive Agents/adverse effects , Behavior, Animal/drug effects , Cell Degranulation/drug effects , Drug Hypersensitivity/immunology , Mast Cells/immunology , Nerve Tissue Proteins/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/immunology , Animals , Antidepressive Agents/pharmacology , Cell Line , Drug Hypersensitivity/pathology , Humans , Mast Cells/pathology , Mice , Nerve Tissue Proteins/agonists , Receptors, G-Protein-Coupled/agonists , Receptors, Neuropeptide/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...