Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(18): 10919-10925, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33912879

ABSTRACT

Photon-induced trap deactivation is commonly observed in organometal halide perovskites. Trap deactivation is characterized by an obvious photoluminescence (PL) enhancement. In this work, the properties of traps in CH3NH3PbI3 perovskite films were studied based on the PL enhancement excited by lasers of different wavelengths (633 nm and 405 nm). Two types of electron traps were identified; one can be deactivated by both 633 nm and 405 nm illuminations, whereas the other one can only be deactivated by 405 nm illumination. The energy levels of both types of traps were beneath the conduction band minimum. The expressions of the PL enhancement kinetics due to the trap deactivations by lasers of different wavelengths were derived. The ratio of the constants of the radiative recombination rate and the initial capture rates for both traps was determined from the PL enhancement. The trap deactivation was a photon-related process rather than a photocarrier-related process, and the deactivation time was inversely proportional to the photon flux density.

2.
RSC Adv ; 11(9): 4935-4941, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-35424443

ABSTRACT

Cu2O is a promising material for photocatalysis because of its absorption ability in the ultraviolet (UV)-visible light range. Cu2O deposited on conductive Ti and fluorine-doped tin oxide (FTO) substrates behaves as a photocathode. Cu2O deposited on an n-type semiconductor such as TiO2 nanotube arrays (TNA)/Ti behaves as a photoanode and has demonstrated better photocatalytic activity than that of TNA/Ti. The substrate-dependent photocatalytic properties of Cu2O heterojunctions are not well studied. In this work, the photocatalytic properties of a Cu2O/TNA/Ti junction as a photoanode and of Cu2O/Ti and Cu2O/FTO junctions as photocathodes without bias were systematically studied to understand their performance. The Cu2O/TNA/Ti photoanode exhibited higher photocurrent spectral responses than those of Cu2O/Ti and Cu2O/FTO photocathodes. The photoanodic/photocathodic properties of those junctions were depicted in their energy band diagrams. Time-resolved photoluminescence indicated that Cu2O/TNA/Ti, Cu2O/Ti, and Cu2O/FTO junctions did not enhance the separation of photogenerated charges. The improved photocatalytic properties of Cu2O/TNA/Ti compared with TNA/Ti were mainly attributed to the UV-visible light absorption of Cu2O.

3.
PLoS One ; 15(11): e0241829, 2020.
Article in English | MEDLINE | ID: mdl-33166360

ABSTRACT

The dragline silk of spiders is of particular interest to science due to its unique properties that make it an exceptional biomaterial that has both high tensile strength and elasticity. To improve these natural fibers, researchers have begun to try infusing metals and carbon nanomaterials to improve mechanical properties of spider silk. The objective of this study was to incorporate carbon nanomaterials into the silk of an orb-weaving spider, Nephila pilipes, by feeding them solutions containing graphene and carbon nanotubes. Spiders were collected from the field and in the lab were fed solutions by pipette containing either graphene sheets or nanotubes. Major ampullate silk was collected and a tensile tester was used to determine mechanical properties for pre- and post-treatment samples. Raman spectroscopy was then used to test for the presence of nanomaterials in silk samples. There was no apparent incorporation of carbon nanomaterials in the silk fibers that could be detected with Raman spectroscopy and there were no significant improvements in mechanical properties. This study represents an example for the importance of attempting to replicate previously published research. Researchers should be encouraged to continue to do these types of investigations in order to build a strong consensus and solid foundation for how to go forward with these new methods for creating novel biomaterials.


Subject(s)
Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Silk/chemistry , Animals , Biocompatible Materials/chemistry , Spectrum Analysis, Raman , Spiders , Tensile Strength
4.
ACS Appl Mater Interfaces ; 10(39): 33399-33406, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30198707

ABSTRACT

Low dark current organic photodetectors (OPDs) with a conventional structure consisting of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as active layer have been fabricated by spray-coating. Tuning the thickness of active layer and thermal annealing process for the spray-coated OPDs results in a remarkable performance with a low dark current density ( Jd) of 2.90 × 10-8 A/cm2 at reverse bias of 1 V. The impact of thermal annealing on the performance of sprayed OPDs is also investigated by the impedance analysis for mechanistic understanding. Our results demonstrate that the optimization of PCBM cluster and interfacial contact between the active layer and the metal electrode tailored by thermal annealing, respectively, could effectively reduce the Jd and increase the sensitivity of sprayed OPDs. The control of PCBM cluster is more important than the interfacial contact between the layers for improving Jd. In addition, structural characterization of the active layer studied by synchrotron small-angle X-ray scattering technique reveals why the spray-coated process can achieve the lowest dark current due to the favorable structure.

5.
Sci Rep ; 5: 8091, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25627445

ABSTRACT

Understanding the elastic response on the nanoscale phase boundaries of multiferroics is an essential issue in order to explain their exotic behaviour. Mixed-phase BiFeO3 films, epitaxially grown on LaAlO3 (001) substrates, have been investigated by means of scanning probe microscopy to characterize the elastic and piezoelectric responses in the mixed-phase region of rhombohedral-like monoclinic (MI) and tilted tetragonal-like monoclinic (MII,tilt) phases. Ultrasonic force microscopy reveal that the regions with low/high stiffness values topologically coincide with the MI/MII,tilt phases. X-ray diffraction strain analysis confirms that the MI phase is more compliant than the MII,tilt one. Significantly, the correlation between elastic modulation and piezoresponse across the mixed-phase regions manifests that the flexoelectric effect results in the enhancement of the piezoresponse at the phase boundaries and in the MI regions. This accounts for the giant electromechanical effect in strained mixed-phase BiFeO3 films.

6.
Opt Express ; 16(11): 7832-41, 2008 May 26.
Article in English | MEDLINE | ID: mdl-18545493

ABSTRACT

This work demonstrates that arbitrary types of spatially modulated second-order susceptibility (chi((2)) structures such as 1D and 2D, periodic and quasi-periodic structures can be obtained by using the combination of corona poling and direct laser writing (DLW) techniques. The fabrication technique is based on the photodepoling of azo-dye molecules caused by one-photon or two-photon absorption during the DLW process. Polarization and second harmonic generation (SHG) images of the fabricated structures were measured by electrostatic force microscope and SHG mapping techniques, respectively. Furthermore, quasi-phase-matched (QPM) enhanced SHG from a 1D periodically poled azo-copolymer planar waveguide is demonstrated using an optical parametric oscillator laser by scanning wavelength from 1500 to 1600 nm. The resonant wavelength of the QPM enhanced SHG is peaked at 1537 nm with FWHM is congruent to 2.5 nm.


Subject(s)
Azo Compounds/chemistry , Computer-Aided Design , Models, Theoretical , Optics and Photonics/instrumentation , Oscillometry/instrumentation , Polymers/chemistry , Computer Simulation , Equipment Design , Equipment Failure Analysis , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...