Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(33): 18353-61, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26241082

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) are an emerging class of microporous materials that possess an organic flexible scaffold and zeolite-like topology. The catalytic and molecular-separation capabilities of these materials have attracted considerable attention; however, crystal-shape engineering in ZIF materials remains in its infancy. This is the first study to report an effective method for tailoring the near-spherical crystal morphology of ZIF-8 using its leaf-like pseudopolymorph, ZIF-L. A thin, uniform layer of ZIF-8 is formed on ZIF-L through heterogeneous surface growth to produce a ZIF-L@ZIF-8 core-shell nanocomposite. This results in ZIF-8 with a crystal morphology comprising two-dimensional nanoflakes. We characterized the resulting core-shell crystals using a number of solid-state techniques, including powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and nitrogen physisorption. Approximately 16 mass% of ZIF-8 in the core-shell composites heterogeneous surfacely grown on ZIF-L core crystals. We also investigated the effects of zinc salts, which were used as a source of zinc in the formation of the ZIF-L@ZIF-8 core-shell nanocomposites. Finally, we assessed the CO2 adsorption properties of ZIF-8, ZIF-L, and ZIF-L@ZIF-8 core-shell crystals, the results of which were used to deduce the dynamic and equilibrium adsorption characteristics of various microporous ZIF crystals. The core-shell materials present hybridized CO2 uptake and diffusivity of the parent crystals. The proposed method for the synthesis of core-shell nanocomposites using pseudopolymorphic crystals is applicable to other ZIF systems.

2.
Sci Rep ; 4: 6983, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25382139

ABSTRACT

We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...