Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35406195

ABSTRACT

Plastic films are widely used in current agricultural practices; however, most mulch films used are discarded and buried in the land after harvest, having adverse environmental impacts. To solve this environmental problem, the demand for biodegradable mulch has been increasing in recent years. Polybutylene succinate-co-adipate (PBSA) is a biodegradable polymer with good ductility and can be used for packaging and mulching. In this study, we isolated two elite fungal strains for PBSA degradation from farmlands, i.e., Aspergillus fumigatus L30 and Aspergillus terreus HC, and the latter showed better degradation ability than the former. It is noteworthy that biodegradation of PBSA by A. terreus is reported for the first time, which revealed unique characteristics. In the soil burial test, even the soil with relatively poor degradation ability could be improved by the addition of elite fungal mycelia. In substrate specificity analyses of soil samples, PBSA could induce the synthesis of lipolytic enzymes of indigenous microbes to degrade substrates with medium and long carbon chains in soil. Furthermore, PBSA residues or fungal mycelia supplementation in soils had no adverse effect on the seed germination rate, seedling growth, or mature plant weight of the test green leafy vegetable. Taken together, the results of this study not only advance our understanding of the biodegradation of PBSA films by filamentous fungi but also provide insight into improving the efficiency of biodegradation in soil environments.

2.
Front Microbiol ; 10: 2422, 2019.
Article in English | MEDLINE | ID: mdl-31749773

ABSTRACT

Azorhizobium caulinodans ORS571 is a diazotroph that forms N2-fixing nodules on the roots and stems of the tropical legume Sesbania rostrata. Deletion of the parA gene of this bacterium results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem nodules on its host plant. In this study, we constructed a parA overexpression mutant (PnptII-parA) to complement a previous study and provide new insights into bacteroid formation. We found that overproduction of ParA did not affect growth, cell morphology, chromosome partitioning, or vegetative nitrogen fixation in the free-living state. Under symbiosis, however, distinctive features, such as a single swollen bacteroid in one symbiosome, relatively narrow symbiosome space, and polyploid cells were observed. The morphotype of the PnptII-parA bacteroid is reminiscent of terminal differentiation in some IRLC indeterminate nodules, but S. rostrata is not thought to produce the NCR peptides that induce terminal differentiation in rhizobia. In addition, the transcript patterns of many symbiosis-related genes elicited by PnptII-parA were different from those elicited by the wild type. Accordingly, we propose that the particular symbiosome formation in PnptII-parA stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation.

3.
Mol Plant Microbe Interact ; 31(8): 856-867, 2018 08.
Article in English | MEDLINE | ID: mdl-29516754

ABSTRACT

The bacterial type VI secretion system (T6SS) has been considered the armed force of bacteria because it can deliver toxin effectors to prokaryotic or eukaryotic cells for survival and fitness. Although many legume symbiotic rhizobacteria encode T6SS in their genome, the biological function of T6SS in these bacteria is still unclear. To elucidate this issue, we used Azorhizobium caulinodans ORS571 and its symbiotic host Sesbania rostrata as our research model. By using T6SS gene deletion mutants, we found that T6SS provides A. caulinodans with better symbiotic competitiveness when coinfected with a T6SS-lacking strain, as demonstrated by two independent T6SS-deficient mutants. Meanwhile, the symbiotic effectiveness was not affected by T6SS because the nodule phenotype, nodule size, and nodule nitrogen-fixation ability did not differ between the T6SS mutants and the wild type when infected alone. Our data also suggest that under several lab culture conditions tested, A. caulinodans showed no T6SS-dependent interbacterial competition activity. Therefore, instead of being an antihost or antibacterial weapon of the bacterium, the T6SS in A. caulinodans ORS571 seems to participate specifically in symbiosis by increasing its symbiotic competitiveness.


Subject(s)
Azorhizobium caulinodans/physiology , Sesbania/microbiology , Symbiosis/physiology , Type VI Secretion Systems/metabolism , Azorhizobium caulinodans/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Nitrogen Fixation , Type VI Secretion Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...