Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 99: 313-321, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981056

ABSTRACT

1,2-diacetylbenzene (1,2-DAB) is a neurotoxic component of aromatic solvents commonly used in industrial applications that induces neuropathological changes in animals. This study unraveled the toxic impact of 1,2-DAB in nerve tissues, explant cultures, and neuron-glial cultures, and explored whether herbal products can mitigate its toxicity. The effects of DAB on axonal transport were studied in retinal explant cultures grown in a micro-patterned dish. The mitochondrial movement in the axons was captured using time-lapse video recordings. The results showed that 1,2-DAB, but not 1,3-DAB inhibited axonal outgrowth and mitochondrial movement in a dose-dependent manner. The toxicity of 1,2-DAB was further studied in spinal cord tissues and cultures. 1,2-DAB selectively induced modifications of microtubules and neurofilaments in spinal cord tissues. 1,2-DAB also potently induced cell damage in both neuronal and glial cultures. Further, 1,2-DAB-induced cellular ATP depletion precedes cell damage in glial cells. Interestingly, treatment with the herbal products silibinin or silymarin effectively mitigated 1,2-DAB-induced toxicity in spinal cord tissues and neuronal/glial cultures. Collectively, the molecular toxicity of 1,2-DAB in neural tissues involves protein modification, ATP depletion, and axonal transport defects, leading to cell death. Silibinin and silymarin show promising neuroprotective effects against 2-DAB-induced toxicity.


Subject(s)
Neurons , Silymarin , Animals , Silybin , Adenosine Triphosphate
2.
J Pharm Biomed Anal ; 233: 115456, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37285659

ABSTRACT

Electronic cigarettes have rapidly gained acceptance recently. Nicotine-containing electronic cigarette liquids (e-liquids) are prohibited in some countries, but are permitted and simply available online in others. A rapid detection method is therefore required for on-site inspection or screening of a large amount of samples. Our previous study demonstrated a surface-enhanced Raman scattering (SERS)-based approach to identify nicotine-containing e-liquids; without any pre-treatment, e-liquid can be directly tested on our solid-phase SERS substrates, made of silver nanoparticle arrays embedded in anodic aluminium oxide nanochannels (Ag/AAO). However, this approach required manual determination of spectral signatures and negative samples should be validated in the second round detection. Here, after examining 406 commercial e-liquids, we refined this approach by developing artificial intelligence (AI)-assisted spectrum interpretations. We also found that nicotine and benzoic acid can be simultaneously detected in our platform. This increased test sensitivity because benzoic acid is usually used in nicotine salts. Around 64% of nicotine-positive samples in this study showed both signatures. Using either cutoffs of nicotine and benzoic acid peak intensities or a machine learning model based on the CatBoost algorithm, over 90% of tested samples can be correctly discriminated with only one round of SERS measurement. False negative and false positive rates were 2.5-4.4% and 4.4-8.9%, respectively, depending on the interpretation method and thresholds applied. The new approach takes only 1 microliter of sample and can be performed in 1-2 min, suitable for on-site inspection with portable Raman detectors. It could also be a complementary platform to reduce samples that need to be analyzed in the central labs and has the potential to identify other prohibited additives.


Subject(s)
Electronic Nicotine Delivery Systems , Metal Nanoparticles , Nicotine , Spectrum Analysis, Raman , Artificial Intelligence , Benzoic Acid , Silver
3.
J Food Drug Anal ; 28(2): 302-308, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-35696111

ABSTRACT

Nicotine-containing electronic cigarette liquid (e-liquid) is prohibited in many countries, creating requirements for rapid detection approaches for on-site inspection or screening for large amounts of samples. Here, we demonstrate a simple way to identify nicotine using surface-enhanced Raman scattering (SERS) with substrates made of silver nanoparticle arrays imbedded in anodic aluminum oxide nanochannels (Ag/AAO). Compared with the reported colloidal nanoparticle-based SERS, that required serial dilutions to enable colloid aggregation in the viscous e-liquid, a small amount of undiluted e-liquid sample can be directly added onto our solid-phase Ag/AAO substrate without any pre-treatment. The sensitivity of our SERS measurements is 2-3 orders of magnitude higher than that required for identification of nicotine in e-liquid, which is typically around 1000-18,000 ppm. Using such nanoparticle array-based SERS, we have tested 22 commercially available e-liquid products, using the corresponding gas chromatography-mass spectrometry (GC-MS) reports as the reference. The SERS measurements were done within one hour and successfully identified 20 samples. Only 2 samples showed SERS interference from ingredients that were not suitable for SERS analysis.

4.
Exp Cell Res ; 313(1): 53-64, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17069797

ABSTRACT

To deliver non-permeable molecules into cells, one can utilize protocols such as microinjection, electroporation, liposome-mediated transfection or virus-mediated transfection. However, each method has its own limitations. Here we have developed a new molecular delivery technique where live cells or tissues are bombarded with highly accelerated molecules directly and without the need to conjugate the molecules onto carrier particles, which is essential in conventional "gene gun" experiments. Gene bombardments can be applied to well-differentiated cells, primary cultured cells/neurons or tissue explants, all of which are notoriously difficult to transfect. Exogenously made proteins and even bacteria can be effectively introduced into cells where they can execute their function or replicate. Our experimental results and physical model support the notion that accelerated chemicals, proteins, or microorganisms carry enough momentum to penetrate the plasma membrane. The bombardment process is associated with a transient (approximately 10 min) increase in cell permeability, but such membrane leakage has a minimal adverse effect on cell survival.


Subject(s)
Bacteria , Biolistics/methods , Drug Delivery Systems/methods , Animals , Bacteriological Techniques , CHO Cells , Cell Line , Cell Membrane Permeability , Cricetinae , Cricetulus , Cytoskeletal Proteins/administration & dosage , Cytoskeletal Proteins/chemistry , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , Escherichia coli , HeLa Cells , Humans , Models, Biological , Molecular Weight , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Transfection
5.
J Biomed Sci ; 9(3): 246-52, 2002.
Article in English | MEDLINE | ID: mdl-12065899

ABSTRACT

Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli.


Subject(s)
Escherichia coli/genetics , Plasmids/genetics , Transformation, Bacterial , Base Sequence , Calcium/metabolism , Cell Cycle/physiology , DNA, Bacterial/genetics , Escherichia coli/physiology , Genotype , Magnesium/metabolism , Phenotype , Plasmids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...