Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; : OF1-OF13, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967115

ABSTRACT

Targeted protein degradation (TPD) using the ubiquitin proteasome system (UPS) is a rapidly growing drug discovery modality to eliminate pathogenic proteins. Strategies for TPD have focused on heterobifunctional degraders that often suffer from poor drug-like properties, and molecular glues that rely on serendipitous discovery. Monovalent "direct" degraders represent an alternative approach, in which small molecules bind to a target protein and induce degradation of that protein through the recruitment of an E3 ligase complex. Using an ultra-high throughput cell-based screening platform, degraders of the bromodomain extraterminal protein BRD4 were identified and optimized to yield a lead compound, PLX-3618. In this paper, we demonstrate that PLX-3618 elicited UPS-mediated selective degradation of BRD4, resulting in potent antitumor activity in vitro and in vivo. Characterization of the degradation mechanism identified DCAF11 as the E3 ligase required for PLX-3618-mediated degradation of BRD4. Protein-protein interaction studies verified a BRD4:PLX-3618:DCAF11 ternary complex, and mutational studies provided further insights into the DCAF11-mediated degradation mechanism. Collectively, these results demonstrate the discovery and characterization of a novel small molecule that selectively degrades BRD4 through the recruitment of the E3 substrate receptor, DCAF11, and promotes potent antitumor activity in vivo.

2.
Mol Cancer Ther ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907538

ABSTRACT

Targeted protein degradation (TPD) using the ubiquitin proteasome system (UPS) is a rapidly growing drug discovery modality to eliminate pathogenic proteins. Strategies for TPD have focused on heterobifunctional degraders that often suffer from poor drug-like properties, and molecular glues that rely on serendipitous discovery. Monovalent "direct" degraders represent an alternative approach, in which small molecules bind to a target protein and induce degradation of that protein through the recruitment of an E3 ligase complex. Using an ultra-high throughput cell-based screening platform, degraders of the bromodomain extra-terminal (BET) protein BRD4 were identified and optimized to yield a lead compound, PLX-3618. In this paper, we demonstrate that PLX-3618 elicited UPS-mediated selective degradation of BRD4, resulting in potent anti-tumor activity in vitro and in vivo. Characterization of the degradation mechanism identified DCAF11 as the E3 ligase required for PLX-3618-mediated degradation of BRD4. Protein-protein interaction studies verified a BRD4:PLX-3618:DCAF11 ternary complex, and mutational studies provided further insights into the DCAF11-mediated degradation mechanism. Collectively, these results demonstrate the discovery and characterization of a novel small molecule that selectively degrades BRD4 through the recruitment of the E3 substrate receptor, DCAF11, and promotes potent anti-tumor activity in vivo.

3.
Sci Rep ; 11(1): 5696, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707553

ABSTRACT

A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as "overexpression" and "shorter survival" is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8).


Subject(s)
Biomarkers, Tumor/metabolism , Computational Biology/methods , GRB2 Adaptor Protein/metabolism , Prostatic Neoplasms/metabolism , Adult , Aged , Cohort Studies , GRB2 Adaptor Protein/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Multivariate Analysis , Prognosis , Prostatic Neoplasms/genetics , Signal Transduction , Survival Analysis , Up-Regulation/genetics
4.
ACS Chem Biol ; 11(10): 2716-2723, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27499047

ABSTRACT

The dysregulation of RNA splicing is a molecular hallmark of disease, including different and often complex cancers. While gaining recognition as a target for therapeutic discovery, understanding the complex mechanisms guiding RNA splicing remains a challenge for chemical biology. The discovery of small molecule splicing modulators has recently enabled an evaluation of the mechanisms of aberrant splicing. We now report on three unique features within the selectivity of splicing modulators. First, we provide evidence that structural modifications within a splicing modulator can alter the splicing of introns in specific genes differently. These studies indicate that structure activity relationships not only have an effect on splicing activity but also include specificity for specific introns within different genes. Second, we find that these splicing modulators also target the mRNAs encoding components of the spliceosome itself. Remarkably, this effect includes the genes for the SF3B complex, a target of pladienolide B and related splicing modulators. Finally, we report on the first observation of a temporal phenomenon associated with small molecule splicing modulation. Combined, these three observations provide an important new perspective for the exploration of splicing modulation in terms of both future medicinal chemistry programs as well as understanding the key facets underlying its timing.


Subject(s)
Alternative Splicing , Small Molecule Libraries , Introns
SELECTION OF CITATIONS
SEARCH DETAIL
...