Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Immunology ; 103(2): 172-8, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11412304

ABSTRACT

Intranasal immunization of BALB/c strain mice was carried out using baculovirus-derived human chorionic gonadotrophin (hCG) beta-chain, together with Escherichia coli heat-labile enterotoxin. Gonadotrophin-reactive immunoglobulin A (IgA) was induced in a remote mucosal site, the lung, in addition to a systemic IgG response. The extensive sequence homology with luteinizing hormone (LH) results in the production of LH cross-reactive antibodies when holo-hCG is used as an immunogen. In contrast to wild-type hCGbeta, a mutated hCGbeta-chain containing an arginine to glutamic acid substitution at position 68 did not induce the production of antibodies which cross-react with LH. Furthermore, the epitopes utilized in the B-cell response to the mutated hCGbeta shifted away from the immunodominant region of the parent wild-type molecule towards epitopes within the normally weakly immunogenic C terminus. This shift in epitope usage was also seen following intramuscular immunization of rabbits. Thus, a single amino acid change, which does not disrupt the overall structure of the molecule, refocuses the immune response away from a disadvantageous cross-reactive epitope region and towards a normally weakly immunogenic but antigen-unique area. Similar mutational strategies for epitope-refocusing may be applicable to other vaccine candidate molecules.


Subject(s)
B-Lymphocytes/immunology , Chorionic Gonadotropin, beta Subunit, Human/immunology , Epitopes, B-Lymphocyte/immunology , Administration, Intranasal , Animals , Antigens/chemistry , Antigens/immunology , Baculoviridae/genetics , Chorionic Gonadotropin, beta Subunit, Human/chemistry , Chorionic Gonadotropin, beta Subunit, Human/genetics , Cross Reactions , Female , Immunity, Mucosal , Immunization/methods , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin G/biosynthesis , Lung/immunology , Mice , Mice, Inbred BALB C , Plasmids , Point Mutation , Rabbits , Recombinant Proteins/immunology
2.
Photosynth Res ; 50(1): 79-91, 1996 Oct.
Article in English | MEDLINE | ID: mdl-24271824

ABSTRACT

Current structural models indicate that the D1 and D2 polypeptides of the Photosystem two reaction center complex (PS II RC) each span the thylakoid membrane five times. In order to assess the importance of the lumenal extrinsic loop that connects transmembrane helices I and II of D1 we have constructed five deletion mutants and two double mutants in the cyanobaterium Synechocystic sp. PCC 6803. Four of the deletion mutants (Δ59-65, Δ69-74, Δ79-86 and Δ109-110) are obligate photoheterotrophs unable to accumulate D1 in the membrane as assayed by immunoblotting experiments or pulse-labelling experiments using [(35)S]-methionine. In contrast deletion mutant Δ100 which lacks A100 behaved very similarly to the WT control strain in terms of photoautotrophic growth rate, saturated rates of oxygen evolution, flash-induced oxygen evolution, fluorescence induction and decay, and thermoluminescence. Δ100 is the first example of an internal deletion on the lumenal side of the D1 polypeptide that is benign to photosystem two function. Double mutant D103G/E104A also behaves similarly to the WT control strain leading to the conclusion that residues D103 and E104 are unlikely to be involved in ligating the metal ions Mn or Ca(2+), which are needed for photosynthetic oxygen evolution. Double mutant, G109A/G110A, was constructed to assess the significance of this GlyGly motif which is also conserved in the L subunit of purple bacterial reaction centres. The G109A/G110A mutant is able to evolve oxygen at approximately 50-70% of WT rates but is unable to grow phatoautotrophically apparently because of an enhanced sensitivity to photoinactivation than the WT control strain. A photoautotropic revertant was isolated from this strain and shown to result from a mutation that restored the WT codon at position 109. Pulse-chase experiments in cells using [(35)S]-methionine showed that resistance to photoinhibition in the revertant correlated with an enhanced rate of incorporation of D1 into the membrane compared to mutant G109A/G110A. The sensitivity to photoinhibition shown by the G109A/G110A mutant is therefore consistent with a perturbation to the D1 repair cycle possibly at the level of D1 synthesis or incorporation of D1 into the PS II complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...