Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38469725

ABSTRACT

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Subject(s)
Superoxides , Tobacco Mosaic Virus , Mice , Animals , Contrast Media/chemistry , Lipopolysaccharides , Magnetic Resonance Imaging/methods , Liver
2.
J Mater Chem B ; 11(20): 4445-4452, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37144595

ABSTRACT

Virus-like particles (VLPs) are engineered nanoparticles that mimic the properties of viruses-like high tolerance to heat and proteases-but lack a viral genome, making them non-infectious. They are easily modified chemically and genetically, making them useful in drug delivery, enhancing vaccine efficacy, gene delivery, and cancer immunotherapy. One such VLP is Qß, which has an affinity towards an RNA hairpin structure found in its viral RNA that drives the self-assembly of the capsid. It is possible to usurp the native way infectious Qß self-assembles to encapsidate its RNA to place enzymes inside the VLP's lumen as a protease-resistant cage. Further, using RNA templates that mimic the natural self-assembly of the native capsid, fluorescent proteins (FPs) have been placed inside VLPs in a "one pot" expression system. Autofluorescence in tissues can lead to misinterpretation of results and unreliable science, so we created a single-pot expression system that uses the fluorescent protein smURFP, which avoids autofluorescence and has spectral properties compatible with standard commercial filter sets on confocal microscopes. In this work, we were able to simplify the existing "one-pot" expression system while creating high-yielding fluorescent VLP nanoparticles that could easily be imaged inside lung epithelial tissue.


Subject(s)
Capsid Proteins , Capsid , Capsid Proteins/metabolism , Capsid/metabolism , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...