Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Am J Hum Genet ; 111(6): 1061-1083, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38723632

ABSTRACT

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/genetics , Transcriptome , Risk Factors , Genomics/methods , Case-Control Studies , Multiomics
2.
Nat Genet ; 54(12): 1853-1864, 2022 12.
Article in English | MEDLINE | ID: mdl-36456881

ABSTRACT

Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.


Subject(s)
Genomics , Ovarian Neoplasms , Female , Humans , Survivors , Ovarian Neoplasms/genetics
3.
Clin Cancer Res ; 28(22): 4947-4956, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35816189

ABSTRACT

PURPOSE: To identify molecular subclasses of clear cell ovarian carcinoma (CCOC) and assess their impact on clinical presentation and outcomes. EXPERIMENTAL DESIGN: We profiled 421 primary CCOCs that passed quality control using a targeted deep sequencing panel of 163 putative CCOC driver genes and whole transcriptome sequencing of 211 of these tumors. Molecularly defined subgroups were identified and tested for association with clinical characteristics and overall survival. RESULTS: We detected a putative somatic driver mutation in at least one candidate gene in 95% (401/421) of CCOC tumors including ARID1A (in 49% of tumors), PIK3CA (49%), TERT (20%), and TP53 (16%). Clustering of cancer driver mutations and RNA expression converged upon two distinct subclasses of CCOC. The first was dominated by ARID1A-mutated tumors with enriched expression of canonical CCOC genes and markers of platinum resistance; the second was largely comprised of tumors with TP53 mutations and enriched for the expression of genes involved in extracellular matrix organization and mesenchymal differentiation. Compared with the ARID1A-mutated group, women with TP53-mutated tumors were more likely to have advanced-stage disease, no antecedent history of endometriosis, and poorer survival, driven by their advanced stage at presentation. In women with ARID1A-mutated tumors, there was a trend toward a lower rate of response to first-line platinum-based therapy. CONCLUSIONS: Our study suggests that CCOC consists of two distinct molecular subclasses with distinct clinical presentation and outcomes, with potential relevance to both traditional and experimental therapy responsiveness. See related commentary by Lheureux, p. 4838.


Subject(s)
Adenocarcinoma, Clear Cell , Endometriosis , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Adenocarcinoma, Clear Cell/drug therapy , Adenocarcinoma, Clear Cell/genetics , Mutation , Endometriosis/genetics , Endometriosis/pathology
5.
Eur J Hum Genet ; 30(3): 349-362, 2022 03.
Article in English | MEDLINE | ID: mdl-35027648

ABSTRACT

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Bayes Theorem , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors
6.
Cancer Epidemiol Biomarkers Prev ; 31(1): 132-141, 2022 01.
Article in English | MEDLINE | ID: mdl-34697060

ABSTRACT

BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a rare ovarian cancer histotype that tends to be resistant to standard platinum-based chemotherapeutics. We sought to better understand the role of DNA methylation in clinical and biological subclassification of OCCC. METHODS: We interrogated genome-wide methylation using DNA from fresh frozen tumors from 271 cases, applied nonsmooth nonnegative matrix factorization (nsNMF) clustering, and evaluated clinical associations and biological pathways. RESULTS: Two approximately equally sized clusters that associated with several clinical features were identified. Compared with Cluster 2 (N = 137), Cluster 1 cases (N = 134) presented at a more advanced stage, were less likely to be of Asian ancestry, and tended to have poorer outcomes including macroscopic residual disease following primary debulking surgery (P < 0.10). Subset analyses of targeted tumor sequencing and IHC data revealed that Cluster 1 tumors showed TP53 mutation and abnormal p53 expression, and Cluster 2 tumors showed aneuploidy and ARID1A/PIK3CA mutation (P < 0.05). Cluster-defining CpGs included 1,388 CpGs residing within 200 bp of the transcription start sites of 977 genes; 38% of these genes (N = 369 genes) were differentially expressed across cluster in transcriptomic subset analysis (P < 10-4). Differentially expressed genes were enriched for six immune-related pathways, including IFNα and IFNγ responses (P < 10-6). CONCLUSIONS: DNA methylation clusters in OCCC correlate with disease features and gene expression patterns among immune pathways. IMPACT: This work serves as a foundation for integrative analyses that better understand the complex biology of OCCC in an effort to improve potential for development of targeted therapeutics.


Subject(s)
Adenocarcinoma, Clear Cell/genetics , DNA Methylation , Ovarian Neoplasms/genetics , Adenocarcinoma, Clear Cell/ethnology , Adenocarcinoma, Clear Cell/pathology , Adult , Aged , Aged, 80 and over , Aneuploidy , Class I Phosphatidylinositol 3-Kinases/genetics , CpG Islands/genetics , DNA-Binding Proteins/genetics , Disease Progression , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Mutation , Neoplasm Staging , Ovarian Neoplasms/ethnology , Ovarian Neoplasms/pathology , Prognosis , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics
7.
Clin Cancer Res ; 26(20): 5411-5423, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32554541

ABSTRACT

PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.


Subject(s)
Cystadenoma, Serous/genetics , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Transcriptome/genetics , Aged , Algorithms , Cystadenoma, Serous/classification , Cystadenoma, Serous/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Middle Aged , Neoplasm Grading , Neoplasm, Residual/classification , Neoplasm, Residual/genetics , Neoplasm, Residual/pathology , Ovarian Neoplasms/classification , Ovarian Neoplasms/pathology
8.
Gynecol Oncol ; 156(3): 552-560, 2020 03.
Article in English | MEDLINE | ID: mdl-31902686

ABSTRACT

OBJECTIVE: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Adenocarcinoma, Mucinous/metabolism , Adenocarcinoma, Mucinous/pathology , Aged , Cohort Studies , DNA Mismatch Repair , Female , Homologous Recombination , Humans , Immunohistochemistry , Mutation , Neoplasm Staging , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics
9.
Nat Commun ; 10(1): 3935, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477716

ABSTRACT

Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain etiology, including whether it genuinely arises at the ovary or is metastatic disease from other organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic disease are poorly defined. We perform genetic analysis of MOC across all histological grades, including benign and borderline mucinous ovarian tumors, and compare these to tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct from tumors from other sites and supports a progressive model of evolution from borderline precursors to high-grade invasive MOC. Key drivers of progression identified are TP53 mutation and copy number aberrations, including a notable amplicon on 9p13. High copy number aberration burden is associated with worse prognosis in MOC. Our data conclusively demonstrate that MOC arise from benign and borderline precursors at the ovary and are not extra-ovarian metastases.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Carcinoma, Ovarian Epithelial/genetics , Gene Expression Profiling/methods , Ovarian Neoplasms/genetics , Adenocarcinoma, Mucinous/classification , Adenocarcinoma, Mucinous/metabolism , Carcinoma, Ovarian Epithelial/classification , Carcinoma, Ovarian Epithelial/metabolism , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Mutation , Ovarian Neoplasms/classification , Ovarian Neoplasms/metabolism , Sequence Analysis, DNA/methods , Survival Analysis
10.
Sci Rep ; 8(1): 1508, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367611

ABSTRACT

Identifying single nucleotide polymorphisms (SNPs) that influence chemotherapy disposition may help to personalize cancer treatment and limit toxicity. Genome-wide approaches are unbiased, compared with candidate gene studies, but usually require large cohorts. As most chemotherapy is given cyclically multiple blood sampling is required to adequately define drug disposition, limiting patient recruitment. We found that carboplatin and paclitaxel disposition are stable phenotypes in ovarian cancer patients and tested a genome-wide association study (GWAS) design to identify SNPs associated with chemotherapy disposition. We found highly significant SNPs in ABCC2, a known carboplatin transporter, associated with carboplatin clearance (asymptotic P = 5.2 × 106, empirical P = 1.4 × 10-5), indicating biological plausibility. We also identified novel SNPs associated with paclitaxel disposition, including rs17130142 with genome-wide significance (asymptotic P = 2.0 × 10-9, empirical P = 1.3 × 10-7). Although requiring further validation, our work demonstrated that GWAS of chemotherapeutic drug disposition can be effective, even in relatively small cohorts, and can be adopted in drug development and treatment programs.


Subject(s)
Antineoplastic Agents/metabolism , Carboplatin/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Genome-Wide Association Study , Paclitaxel/metabolism , Antineoplastic Agents/administration & dosage , Carboplatin/administration & dosage , Female , Genome, Human , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Paclitaxel/administration & dosage , Polymorphism, Single Nucleotide
11.
JCO Precis Oncol ; 2: 1-14, 2018 Nov.
Article in English | MEDLINE | ID: mdl-35135122

ABSTRACT

PURPOSE: Low-grade serous ovarian carcinoma (LGSC) responds poorly to chemotherapy and is characterized by activating mutations in the Ras sarcoma-mitogen-activated protein kinase (RAS-MAPK) pathway, including oncogenic BRAF. However, response to BRAF inhibitors is tumor-type specific. Significant improvement in survival is seen in patients with BRAF-mutant melanoma, but other cancer types, such as colorectal cancers, are generally less sensitive. We examined the frequency and characteristics of BRAF-mutated LGSC and described the response to treatment with BRAF inhibitors. PATIENTS AND METHODS: Mutations were assessed in LGSC (N = 65) by using targeted, exome, and whole-genome sequencing. Patient characteristics, treatment, and clinical outcome were assessed, and the median follow-up time was more than 5 years. BRAF inhibitors were trialed in two patients with a somatic BRAF V600E mutation: one patient received dabrafenib monotherapy and was monitored clinically, biochemically (cancer antigen [CA]-125 levels), and with positron emission tomography (PET) imaging. Expression of the BRAF V600E protein in this patient was assessed by immunohistochemistry. RESULTS: Among patients with LGSC, nine (13.8%) of 65 had a somatic BRAF mutation. Of the nine patients with BRAF mutation-positive LGSC, four experienced progressive disease that did not respond to conventional chemotherapy. Two of the patients experienced progression quickly and died as a result of disease progression, and two received targeted treatment. Two patients with BRAF V600E mutation received BRAF inhibitors at relapse and both achieved durable responses. CONCLUSION: BRAF mutations are not uncommon in patients with LGSC and should be routinely tested, because BRAF inhibitors can be an effective treatment for these patients. The results highlight the need for targeted treatment in this rare tumor type, and a prospective study is needed to formally assess the response rate and clinical benefit.

12.
Clin Cancer Res ; 24(3): 569-580, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29061645

ABSTRACT

Purpose: Women with epithelial ovarian cancer generally have a poor prognosis; however, a subset of patients has an unexpected dramatic and durable response to treatment. We sought to identify clinical, pathological, and molecular determinants of exceptional survival in women with high-grade serous cancer (HGSC), a disease associated with the majority of ovarian cancer deaths.Experimental Design: We evaluated the histories of 2,283 ovarian cancer patients and, after applying stringent clinical and pathological selection criteria, identified 96 with HGSC that represented significant outliers in terms of treatment response and overall survival. Patient samples were characterized immunohistochemically and by genome sequencing.Results: Different patterns of clinical response were seen: long progression-free survival (Long-PFS), multiple objective responses to chemotherapy (Multiple Responder), and/or greater than 10-year overall survival (Long-Term Survivors). Pathogenic germline and somatic mutations in genes involved in homologous recombination (HR) repair were enriched in all three groups relative to a population-based series. However, 29% of 10-year survivors lacked an identifiable HR pathway alteration, and tumors from these patients had increased Ki-67 staining. CD8+ tumor-infiltrating lymphocytes were more commonly present in Long-Term Survivors. RB1 loss was associated with long progression-free and overall survival. HR deficiency and RB1 loss were correlated, and co-occurrence was significantly associated with prolonged survival.Conclusions: There was diversity in the clinical trajectory of exceptional survivors associated with multiple molecular determinants of exceptional outcome in HGSC patients. Concurrent HR deficiency and RB1 loss were associated with favorable outcomes, suggesting that co-occurrence of specific mutations might mediate durable responses in such patients. Clin Cancer Res; 24(3); 569-80. ©2017 AACRSee related commentary by Peng and Mills, p. 508.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/mortality , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Recombinational DNA Repair , Retinoblastoma Protein/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Cystadenocarcinoma, Serous/diagnosis , Female , Homologous Recombination , Humans , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/metabolism , Prognosis , Retinoblastoma Protein/metabolism , Signal Transduction , Survival Analysis , Symptom Assessment
13.
Cancer Res ; 77(16): 4268-4278, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28646021

ABSTRACT

Low-grade serous ovarian carcinomas (LGSC) are associated with a poor response to chemotherapy and are molecularly characterized by RAS pathway activation. Using exome and whole genome sequencing, we identified recurrent mutations in the protein translational regulator EIF1AX and in NF1, USP9X, KRAS, BRAF, and NRAS RAS pathway mutations were mutually exclusive; however, we found significant co-occurrence of mutations in NRAS and EIF1AX Missense EIF1AX mutations were clustered at the N-terminus of the protein in a region associated with its role in ensuring translational initiation fidelity. Coexpression of mutant NRAS and EIF1AX proteins promoted proliferation and clonogenic survival in LGSC cells, providing the first example of co-occurring, growth-promoting mutational events in ovarian cancer. Cancer Res; 77(16); 4268-78. ©2017 AACR.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Eukaryotic Initiation Factor-1/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Mutation , Ovarian Neoplasms/genetics , Cell Line, Tumor , Cystadenocarcinoma, Serous/pathology , Eukaryotic Initiation Factor-1/biosynthesis , Female , Gene Knockdown Techniques , Humans , Mutagenesis, Site-Directed , Neoplasm Grading , Neoplasm Staging , Ovarian Neoplasms/pathology
14.
Oncotarget ; 6(35): 37663-77, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26506417

ABSTRACT

Low grade serous ovarian tumours are a rare and under-characterised histological subtype of epithelial ovarian tumours, with little known of the molecular drivers and facilitators of tumorigenesis beyond classic oncogenic RAS/RAF mutations. With a move towards targeted therapies due to the chemoresistant nature of this subtype, it is pertinent to more fully characterise the genetic events driving this tumour type, some of which may influence response to therapy and/or development of drug resistance. We performed genome-wide high-resolution genomic copy number analysis (Affymetrix SNP6.0) and mutation hotspot screening (KRAS, BRAF, NRAS, HRAS, ERBB2 and TP53) to compare a large cohort of ovarian serous borderline tumours (SBTs, n = 57) with low grade serous carcinomas (LGSCs, n = 19). Whole exome sequencing was performed for 13 SBTs, nine LGSCs and one mixed low/high grade carcinoma. Copy number aberrations were detected in 61% (35/57) of SBTs, compared to 100% (19/19) of LGSCs. Oncogenic RAS/RAF/ERBB2 mutations were detected in 82.5% (47/57) of SBTs compared to 63% (12/19) of LGSCs, with NRAS mutations detected only in LGSC. Some copy number aberrations appeared to be enriched in LGSC, most significantly loss of 9p and homozygous deletions of the CDKN2A/2B locus. Exome sequencing identified BRAF, KRAS, NRAS, USP9X and EIF1AX as the most frequently mutated genes. We have identified markers of progression from borderline to LGSC and novel drivers of LGSC. USP9X and EIF1AX have both been linked to regulation of mTOR, suggesting that mTOR inhibitors may be a key companion treatment for targeted therapy trials of MEK and RAF inhibitors.


Subject(s)
Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/genetics , Exome/genetics , Gene Expression Profiling , Genetic Variation/genetics , Ovarian Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cystadenocarcinoma, Serous/pathology , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/pathology , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
16.
Nature ; 521(7553): 489-94, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017449

ABSTRACT

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Genome, Human/genetics , Ovarian Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cohort Studies , Cyclin E/genetics , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , DNA Methylation , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genes, Neurofibromatosis 1 , Germ-Line Mutation/genetics , Humans , Mutagenesis/genetics , Oncogene Proteins/genetics , Ovarian Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Promoter Regions, Genetic/genetics , Retinoblastoma Protein/genetics
17.
Clin Cancer Res ; 20(24): 6618-30, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25316818

ABSTRACT

PURPOSE: Low-grade serous ovarian carcinomas (LGSC) are Ras pathway-mutated, TP53 wild-type, and frequently associated with borderline tumors. Patients with LGSCs respond poorly to platinum-based chemotherapy and may benefit from pathway-targeted agents. High-grade serous carcinomas (HGSC) are TP53-mutated and are thought to be rarely associated with borderline tumors. We sought to determine whether borderline histology associated with grade 2 or 3 carcinoma was an indicator of Ras mutation, and we explored the molecular relationship between coexisting invasive and borderline histologies. EXPERIMENTAL DESIGN: We reviewed >1,200 patients and identified 102 serous carcinomas with adjacent borderline regions for analyses, including candidate mutation screening, copy number, and gene expression profiling. RESULTS: We found a similar frequency of low, moderate, and high-grade carcinomas with coexisting borderline histology. BRAF/KRAS alterations were common in LGSC; however, we also found recurrent NRAS mutations. Whereas borderline tumors harbored BRAF/KRAS mutations, NRAS mutations were restricted to carcinomas, representing the first example of a Ras oncogene with an obligatory association with invasive serous cancer. Coexisting borderline and invasive components showed nearly identical genomic profiles. Grade 2 cases with coexisting borderline included tumors with molecular features of LGSC, whereas others were typical of HGSC. However, all grade 3 carcinomas with coexisting borderline histology were molecularly indistinguishable from typical HGSC. CONCLUSION: Our findings suggest that NRAS is an oncogenic driver in serous ovarian tumors. We demonstrate that borderline histology is an unreliable predictor of Ras pathway aberration and underscore an important role for molecular classification in identifying patients that may benefit from targeted agents.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , ras Proteins/genetics , ras Proteins/metabolism , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cluster Analysis , Cohort Studies , Cystadenocarcinoma, Serous/mortality , Cystadenocarcinoma, Serous/pathology , DNA Copy Number Variations , Female , Humans , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Staging , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Signal Transduction , Young Adult
18.
Clin Cancer Res ; 17(23): 7273-82, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21976534

ABSTRACT

PURPOSE: Serous ovarian carcinomas are the predominant epithelial ovarian cancer subtype and it has been widely believed that some or all of these may arise from precursors derived from the ovarian surface epithelium or fimbriae, although direct molecular evidence for this is limited. This study aimed to conduct copy number (CN) analysis using a series of benign and borderline serous ovarian tumors to identify underlying genomic changes that may be indicative of early events in tumorigenesis. EXPERIMENTAL DESIGN: High resolution CN analysis was conducted on DNA from the epithelial and fibroblast components of a cohort of benign (N = 39) and borderline (N = 24) serous tumors using the Affymetrix OncoScan assay and SNP6.0 arrays. RESULTS: CN aberrations were detected in the epithelium of only 2.9% (1 of 35) of serous cystadenomas and cystadenofibromas. In contrast, CN aberrations were detected in the epithelium of 67% (16 of 24) of the serous borderline tumors (SBT). Unexpectedly, CN aberrations were detected in the fibroblasts of 33% (13 of 39) of the benign serous tumors and in 15% (3 of 20) of the SBTs. Of the 16 cases with CN aberrations in the fibroblasts, 12 of these carried a gain of chromosome 12. CONCLUSIONS: Chromosome 12 trisomy has been previously identified in pure fibromas, supporting the concept that a significant proportion of benign serous tumors are in fact primary fibromas with an associated cystic mass. This is the first high resolution genomic analysis of benign serous ovarian tumors and has shown not only that the majority of benign serous tumors have no genetic evidence of epithelial neoplasia but that a significant proportion may be more accurately classified as primary fibromas.


Subject(s)
Adenofibroma/genetics , Cystadenoma, Serous/genetics , DNA Copy Number Variations , Ovarian Neoplasms/genetics , Adenofibroma/classification , Adenofibroma/pathology , Base Sequence , Cystadenoma, Serous/classification , Cystadenoma, Serous/pathology , Epithelium/pathology , Female , Humans , Ovarian Neoplasms/classification , Ovarian Neoplasms/pathology , Ovary/pathology , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Serous Membrane/pathology
19.
Clin Cancer Res ; 15(4): 1417-27, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19193619

ABSTRACT

PURPOSE: A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. EXPERIMENTAL DESIGN: Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. RESULTS: Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. CONCLUSIONS: We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.


Subject(s)
Gene Dosage , Ovarian Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Cyclin E/genetics , Cyclin E/physiology , Drug Resistance, Neoplasm , Female , Gene Amplification , Gene Deletion , Histone Acetyltransferases/genetics , Histone Acetyltransferases/physiology , Humans , Ki-67 Antigen/analysis , Middle Aged , Nuclear Receptor Coactivator 3 , Oncogene Proteins/genetics , Oncogene Proteins/physiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Trans-Activators/genetics , Trans-Activators/physiology
20.
Clin Cancer Res ; 14(21): 6924-32, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18980987

ABSTRACT

PURPOSE: The standard of care for ovarian cancer includes platinum-based chemotherapy. It is not possible, however, to predict clinical platinum sensitivity or to design rational strategies to overcome resistance. We used a novel approach to identify altered gene expression associated with high sensitivity to cisplatin, to define novel targets to sensitize tumor cells to platins and ultimately improve the effectiveness of this widely used class of chemotherapeutics. EXPERIMENTAL DESIGN: Using differential display PCR, we identified genes differentially expressed in a mutagenized cell line with unusual sensitivity to cisplatin. The most highly differentially expressed gene was selected, and its role in determining cisplatin sensitivity was validated by gene transfection and small interfering RNA (siRNA) approaches, by association of expression levels with cisplatin sensitivity in cell lines, and by association of tumor expression levels with survival in a retrospective cohort of 71 patients with serous ovarian adenocarcinoma. RESULTS: The most highly differently expressed gene identified was ANKRD1, ankyrin repeat domain 1 (cardiac muscle). ANKRD1 mRNA levels were correlated with platinum sensitivity in cell lines, and most significantly, decreasing ANKRD1 using siRNA increased cisplatin sensitivity >2-fold. ANKRD1 was expressed in the majority of ovarian adenocarcinomas tested (62/71, 87%), and higher tumor levels of ANKRD1 were found in patients with worse outcome (overall survival, P=0.013). CONCLUSIONS: These findings suggest that ANKRD1, a gene not previously associated with ovarian cancer or with response to chemotherapy, is associated with treatment outcome, and decreasing ANKRD1 expression, or function, is a potential strategy to sensitize tumors to platinum-based drugs.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Cisplatin/therapeutic use , Muscle Proteins/genetics , Nuclear Proteins/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Repressor Proteins/genetics , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , Antineoplastic Agents/therapeutic use , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Drug Resistance, Neoplasm/genetics , Female , Humans , Middle Aged , Molecular Sequence Data , Ovarian Neoplasms/mortality , Sequence Analysis, Protein , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...