Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 159(1): 17-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112862

ABSTRACT

Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO2 assimilation rate (A) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured A of 168 temperate japonica rice varieties with six replicates for three years. We found that the modern varieties exhibited higher A than the landraces, while there was no significant relationship between the release year and A among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Photosynthesis/genetics , Plant Leaves/genetics
2.
Rice (N Y) ; 16(1): 53, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38006407

ABSTRACT

Deep-water (DW) management in rice fields is a promising technique for efficient control of paddy weeds with reduced herbicide use. Maintaining a water depth of 10-20 cm for several weeks can largely suppress the weed growth, though it also inhibits rice growth because the DW management is usually initiated immediately after transplanting. Improving the DW resistance of rice during the initial growth stage is essential to avoid suppressing growth. In this study, we demonstrate a large genetic variation in the above-ground biomass (AGB) after the end of DW management among 165 temperate japonica varieties developed in Japan. Because the AGB closely correlated with plant length (PL) and tiller number (TN) at the early growth stage, we analyzed genomic regions associated with PL and TN by conducting a genome-wide association study. For PL, a major peak was detected on chromosome 3 (qPL3), which includes a gene encoding gibberellin biosynthesis, OsGA20ox1. The rice varieties with increased PL had a higher expression level of OsGA20ox1 as reported previously. For TN, a major peak was detected on chromosome 4 (qTN4), which includes NAL1 gene associated with leaf morphological development and panicle number. Although there was less difference in the expression level of NAL1 between genotypes, our findings suggest that an amino acid substitution in the exon region is responsible for the phenotypic changes. We also found that the rice varieties having alternative alleles of qPL3 and qTN4 showed significantly higher AGB than the varieties with the reference alleles. Our results suggest that OsGA20ox1 and NAL1 are promising genes for improving DW resistance in rice.

3.
Rice (N Y) ; 16(1): 4, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36705856

ABSTRACT

Increasing the lodging resistance of rice through genetic improvement has been an important target in breeding. To further enhance the lodging resistance of high-yielding rice varieties amidst climate change, it is necessary to not only shorten culms but strengthen them as well. A landrace rice variety, Omachi, which was established more than 100 years ago, has the largest culm diameter and bending moment at breaking in the basal internodes among 135 temperate japonica accessions. Using unused alleles in such a landrace is an effective way to strengthen the culm. In this study, we performed quantitative trait locus (QTL) analysis to identify the genetic factors of culm strength of Omachi using recombinant inbred lines (RILs) derived from a cross between Omachi and Koshihikari, a standard variety in Japan. We identified three QTLs for the culm diameter of the 5th internode on chromosomes 3 (qCD3) and 7 (qCD7-1, qCD7-2). Among them, qCD7-2 was verified by QTL analysis using the F2 population derived from a cross between one of the RILs and Koshihikari. RNA-seq analysis of shoot apex raised 10 candidate genes underlying the region of qCD7-2. The increase in culm strength by accumulating Omachi alleles of qCD3, qCD7-1 and qCD7-2 was 25.0% in 2020. These QTLs for culm diameter pleiotropically increased spikelet number per panicle but did not affect days to heading or culm length. These results suggest that the Omachi alleles of qCD3, qCD7-1 and qCD7-2 are useful for breeding to increase lodging resistance and yield.

4.
Sci Rep ; 11(1): 15780, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349177

ABSTRACT

It is generally believed that rice landraces with long culms are susceptible to lodging, and have not been utilized for breeding to improve lodging resistance. However, little is known about the structural culm strength of landraces and their beneficial genetic loci. Therefore, in this study, genome-wide association studies (GWAS) were performed using a rice population panel including Japanese rice landraces to identify beneficial loci associated with strong culms. As a result, the landraces were found to have higher structural culm strength and greater diversity than the breeding varieties. Genetic loci associated with strong culms were identified, and it was demonstrated that haplotypes with positive effects of those loci were present in a high proportion of these landraces. These results indicated that the utilization of the strong culm-associated loci present in Japanese rice landraces may further improve the lodging resistance of modern breeding varieties that have relied on semi-dwarfism.

5.
Sci Rep ; 10(1): 19855, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199753

ABSTRACT

Lodging can reduce grain yield and quality in cereal crops including rice (Oryza sativa L.). To achieve both high biomass production and lodging resistance, the breeding of new cultivars with strong culms is a promising strategy. However, little is known about the diversity of culm strength in temperate japonica rice and underlying genetic factors. Here, we report a wide variation of culm strength among 135 temperate japonica cultivars, and some landraces having the strongest culms among these cultivars. The genome-wide association study (GWAS) identified 55 quantitative trait loci for culm strength and morphological traits, and revealed several candidate genes. The superior allele of candidate gene for culm thickness, OsRLCK191, was found in many landraces but had not inherited to the modern improved cultivars. Our results suggest that landraces of temperate japonica rice have unutilized superior alleles for contributing future improvements of culm strength and lodging resistance.


Subject(s)
Genome-Wide Association Study/methods , Oryza/growth & development , Quantitative Trait Loci , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genome, Plant , Hybridization, Genetic , Oryza/genetics , Phenotype , Plant Breeding , Stress, Physiological , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...