Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976038

ABSTRACT

Environmental viruses (primarily bacteriophages) are widely recognized as playing an important role in ecosystem homeostasis through the infection of host cells. However, the majority of environmental viruses are still unknown as their mosaic structure and frequent mutations in their sequences hinder genome construction in current metagenomics. To enable the large-scale acquisition of environmental viral genomes, we developed a new single-viral genome sequencing platform with microfluidic-generated gel beads. Amplification of individual DNA viral genomes in mass-produced gel beads allows high-throughput genome sequencing compared to conventional single-virus genomics. The sequencing analysis of river water samples yielded 1431 diverse viral single-amplified genomes, whereas viral metagenomics recovered 100 viral metagenome-assembled genomes at the comparable sequence depth. The 99.5% of viral single-amplified genomes were determined novel at the species level, most of which could not be recovered by a metagenomic assembly. The large-scale acquisition of diverse viral genomes identified protein clusters commonly detected in different viral strains, allowing the gene transfer to be tracked. Moreover, comparative genomics within the same viral species revealed that the profiles of various methyltransferase subtypes were diverse, suggesting an enhanced escape from host bacterial internal defense mechanisms. Our use of gel bead-based single-virus genomics will contribute to exploring the nature of viruses by accelerating the accumulation of draft genomes of environmental DNA viruses.

2.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32366032

ABSTRACT

A diet rich in vegetables and fruit is generally considered healthy because of a high content of phytochemicals, vitamins, and fiber. The phytochemical indole-3-carbinol (I3C), a derivative of glucobrassicin, is sold as a dietary supplement promising diverse health benefits. I3C metabolites act as ligands of the aryl hydrocarbon receptor (AhR), an important sensor for environmental polyaromatic chemicals. Here, we investigated how dietary AhR ligand supplementation influences AhR target gene expression and intestinal microbiota composition. For this, we used AhR repressor (AhRR)-reporter mice as a tool to study AhR activation in the intestine following dietary I3C-supplementation in comparison with AhR ligand-deprived diets, including a high fat diet. AhRR expression in intestinal immune cells was mainly driven by dietary AhR ligands and was independent of microbial metabolites. A lack of dietary AhR ligands caused enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis and correlated with the expansion of Enterobacteriaceae, whereas Clostridiales, Muribaculaceae, and Rikenellaceae were strongly reduced. I3C supplementation largely reverted this effect. Comparison of I3C-induced changes in microbiota composition using wild-type (WT), AhRR-deficient, and AhR-deficient mice revealed both AhR-dependent and -independent alterations in the microbiome. Overall, our study demonstrates that dietary AhR ligand supplementation has a profound influence on Ahrr expression in intestinal immune cells as well as microbiota composition.


Subject(s)
Gastrointestinal Microbiome/drug effects , Indoles/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Dextran Sulfate/toxicity , Female , Flow Cytometry , Indoles/therapeutic use , Male , Mice , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Aryl Hydrocarbon/genetics
3.
Microbiome ; 8(1): 5, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31969191

ABSTRACT

BACKGROUND: The gut microbiota can have dramatic effects on host metabolism; however, current genomic strategies for uncultured bacteria have several limitations that hinder their ability to identify responders to metabolic changes in the microbiota. In this study, we describe a novel single-cell genomic sequencing technique that can identify metabolic responders at the species level without the need for reference genomes, and apply this method to identify bacterial responders to an inulin-based diet in the mouse gut microbiota. RESULTS: Inulin-feeding changed the mouse fecal microbiome composition to increase Bacteroides spp., resulting in the production of abundant succinate in the mouse intestine. Using our massively parallel single-cell genome sequencing technique, named SAG-gel platform, we obtained 346 single-amplified genomes (SAGs) from mouse gut microbes before and after dietary inulin supplementation. After quality control, the SAGs were classified as 267 bacteria, spanning 2 phyla, 4 classes, 7 orders, and 14 families, and 31 different strains of SAGs were graded as high- and medium-quality draft genomes. From these, we have successfully obtained the genomes of the dominant inulin-responders, Bacteroides spp., and identified their polysaccharide utilization loci and their specific metabolic pathways for succinate production. CONCLUSIONS: Our single-cell genomics approach generated a massive amount of SAGs, enabling a functional analysis of uncultured bacteria in the intestinal microbiome. This enabled us to estimate metabolic lineages involved in the bacterial fermentation of dietary fiber and metabolic outcomes such as short-chain fatty acid production in the intestinal environment based on the fibers ingested. The technique allows the in-depth isolation and characterization of uncultured bacteria with specific functions in the microbiota and could be exploited to improve human and animal health. Video abstract.


Subject(s)
Bacteria/classification , Dietary Fiber/metabolism , Gastrointestinal Microbiome , Genomics/methods , Inulin/metabolism , Single-Cell Analysis , Animals , Bacteria/metabolism , Dietary Fiber/administration & dosage , Feces/microbiology , Fermentation , Genome, Bacterial , Inulin/administration & dosage , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred BALB C , Prebiotics/analysis , Succinic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...