Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vector Borne Zoonotic Dis ; 24(6): 364-371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573213

ABSTRACT

Background: There is a need to identify different insecticide resistance profiles that represent circumscription-encapsulation of knowledge about malaria vectors' insecticide resistance to increase our understanding of malaria vectors' insecticide resistance dynamics. Methods: Data used in this study are part of the aggregation of over 20,000 mosquito collections done between 1957 and 2018. We applied two data preprocessing steps. We developed three clustering machine learning models based on the K-means algorithm with three selected datasets. The elbow method was used to fine-tune the hyperparameters. We used the silhouette score to assess the clustering results produced by each of the three models. The proposed framework incorporates continuous learning, allowing the machine learning models to learn continuously. Results: For the first model, the optimal number of clusters (profiles) k was 17. For the second model, we found four profiles. For the third model, the optimal number of profiles was 7. Discussion: We found that the insecticide resistance profiles have dynamic resistance levels with respect to the insecticide component, species component, location component, and time component. This profiling task provided knowledge about the evolution of malaria vectors' insecticide resistance in the African continent by encapsulating the information on the complex interaction between the different dimensions of malaria vectors' insecticide resistance into different profiles. Policy makers can use the knowledge about the different profiles found from the analysis of available insecticide resistance monitoring data (through profiling) by using our proposed approach to set up malaria vector control strategies that consider the locations, species present in those locations, and potentially efficient insecticides.


Subject(s)
Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/prevention & control , Anopheles/drug effects , Machine Learning
2.
Biomed Pharmacother ; 165: 115099, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406505

ABSTRACT

One of the most pressing challenges associated with SARS-CoV-2 treatment is the emergence of new variants that may be more transmissible, cause more severe disease, or be resistant to current treatments and vaccines. The emergence of SARS-CoV-2 has led to a global pandemic, resulting in millions of deaths worldwide. Various strategies have been employed to combat the virus, including neutralizing monoclonal antibodies (mAbs), CRISPR/Cas13, and antisense oligonucleotides (ASOs). While vaccines and small molecules have proven to be an effective means of preventing severe COVID-19 and reducing transmission rates, the emergence of new virus variants poses a challenge to their effectiveness. Monoclonal antibodies have shown promise in treating early-stage COVID-19, but their effectiveness is limited in severe cases and the emergence of new variants may reduce their binding affinity. CRISPR/Cas13 has shown potential in targeting essential viral genes, but its efficiency, specificity, and delivery to the site of infection are major limitations. ASOs have also been shown to be effective in targeting viral RNA, but they face similar challenges to CRISPR/Cas13 in terms of delivery and potential off-target effects. In conclusion, a combination of these strategies may provide a more effective means of combating SARS-CoV-2, and future research should focus on improving their efficiency, specificity, and delivery to the site of infection. It is evident that the continued research and development of these alternative therapies will be essential in the ongoing fight against SARS-CoV-2 and its potential future variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Oligonucleotides, Antisense/therapeutic use , Antibodies, Viral
3.
Ann Neurosci ; 29(2-3): 94-103, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36419514

ABSTRACT

Background: Exposure to lead has been linked to biochemical changes similar to those patients suffering from Alzheimer's disease. Trévo is a phytonutrient-rich product with antiaging and antioxidant properties. Purpose: To investigate the neuroprotective activity of trévo against lead-induced biochemical changes in male Wistar rats. Methods: The study involves 35 animals that were randomly divided into five groups of seven rats each. Group I (Control): Orally administered distilled water; Group II (Induced): Administered 15 mg/kg of lead acetate (PbA) intraperitoneally; Group III (Treatment group): Orally administered 2 mL/kg of trévo for two days before co-administration with PbA for 12 consecutive days; Group IV (Treatment group): Orally administered 5 mL/kg of trévo for two days prior to coadministration with PbA for 12 consecutive days; Group V: Orally administered 5 mL/kg of trévo for 14 consecutive days. Animals were anesthetized with diether and the brain excised and processed for the following biochemical assays: Malonedialdehyde (MDA), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GT), acetylcholinesterase (AChE), beta-amyloid, glutamate, Na+/K+ ATPase, and glutamate dehydrogenase (GD). Results: PbA caused significant oxidative stress (increased MDA concentration, decreased GSH concentration, suppressed the activity of CAT, SOD), decreased GT activity, increased activity of AChE, increased the concentration of beta-amyloid, and caused glutamate excitotoxicity (increased concentration of glutamate, decreased activity of Na+/K+ ATPase, and GD) in rat brains. Treatment with trévo at the two different doses significantly prevented oxidative damage, beta-amyloid aggregation, glutamate excitotoxicity, and acetylcholine breakdown induced by lead acetate. Conclusion: Our findings added to the reported pharmacological activity of trévo and supported the antiaging potential of trévo.

4.
Environ Anal Health Toxicol ; 37(2): e2022007-0, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35878915

ABSTRACT

Lead exposure has been linked to health challenges involving multiple organ failure. More than fifty percent of lead present in the human body is accumulated in the liver causing hepatic injury. A major mechanism of lead toxicity is oxidative stress. TrévoTM is a nutritional supplement with numerous bioactive natural products with detoxifying and antioxidant properties. This study was designed to investigate the hepatoprotective effects of TrévoTM dietary supplements against lead-hepatotoxicity in male Wistar rats. Thirty-five healthy animals were divided into five groups of seven each as follows: Group I=control; II=15 mg/kg of lead acetate (PbA); III= 2 mL/kg of TrévoTM + PbA; IV= 5 mL/kg of TrévoTM + PbA;V=5 mL/kg of TrévoTM . Animals were orally treated with TrévoTM for two days before co-administration with PbA intraperitoneally for 12 consecutive days. Animals were sacrificed 24 h after the last administration and blood were collected via cardiac puncture and processed for hematological parameters and assessment of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin (ALB). The liver was excised and processed for markers of oxidative stress and histopathological examination. Intraperitoneal administration of 15 mg/kg of PbA caused a significant increase in serum concentration of AST, ALT, while the concentration of ALB was significantly decreased (Plt;0.001). PbA caused a significant reduction in packed cell volume, hemoglobin while the total white blood cell count, neutrophils, lymphocytes, monocytes, eosinophils, and basophils were increased. Oxidative stress was significantly pronounced in the liver of rats exposed to PbA as observed in the high concentration of malonedialdehyde, decreased concentration of glutathione, the activity of catalase, superoxide dismutase, and glutathione-S-transferase. Pretreatment with TrévoTM was able to significantly prevent the anemic, oxidative damage, and hepatic injury initiated by PbA. Histological examination also corroborated the biochemical results. In conclusion, the study reveals that TrévoTM is effective in attenuating PbA-induced hepatotoxicity in male Wistar rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...