Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834988

ABSTRACT

Non-histone nuclear proteins HMGB1 and HMGB2 (High Mobility Group) are involved in many biological processes, such as replication, transcription, and repair. The HMGB1 and HMGB2 proteins consist of a short N-terminal region, two DNA-binding domains, A and B, and a C-terminal sequence of glutamic and aspartic acids. In this work, the structural organization of calf thymus HMGB1 and HMGB2 proteins and their complexes with DNA were studied using UV circular dichroism (CD) spectroscopy. Post-translational modifications (PTM) of HMGB1 and HMGB2 proteins were determined with MALDI mass spectrometry. We have shown that despite the similar primary structures of the HMGB1 and HMGB2 proteins, their post-translational modifications (PTMs) demonstrate quite different patterns. The HMGB1 PTMs are located predominantly in the DNA-binding A-domain and linker region connecting the A and B domains. On the contrary, HMGB2 PTMs are found mostly in the B-domain and within the linker region. It was also shown that, despite the high degree of homology between HMGB1 and HMGB2, the secondary structure of these proteins is also slightly different. We believe that the revealed structural properties might determine the difference in the functioning of the HMGB1 and HMGB2 as well as their protein partners.


Subject(s)
HMGB1 Protein , HMGB2 Protein , DNA/chemistry , DNA/metabolism , High Mobility Group Proteins , HMGB1 Protein/chemistry , HMGB1 Protein/metabolism , HMGB2 Protein/chemistry , HMGB2 Protein/metabolism , Transcription Factors , Protein Binding , Animals , Cattle
2.
ACS Omega ; 4(16): 16935-16942, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31646240

ABSTRACT

The interaction of cobalt phthalocyanine disodium disulfonate (CoPc) with calf thymus DNA in solutions was investigated by UV/vis spectrophotometry, circular dichroism (CD), and hydrodynamic methods (viscosity and flow birefringence). Two types of CoPc binding to DNA were observed. Fast CoPc interactions with DNA via external binding to phosphates were accompanied by the formation of stack-type phthalocyanine structures on the periphery of the DNA helix. The optical absorption spectra of such CoPc complexes with DNA were analyzed in order to obtain a binding constant K = (4.8 ± 0.4) × 104 M-1. CD spectra show the increasing optical activity of phthalocyanines bonded to DNA. DNA plays the role of a matrix, contributing to an increase in their stacking interactions. The CD spectrum of DNA varies slightly. The second type of cobalt-to-DNA binding manifests itself over a certain time. It can be associated with the reorganization of ligands in the cobalt coordination sphere by introducing DNA atoms. In our experiments, such binding was observed after storage of solutions for approximately 20 h at a temperature of 4 °C. It was shown that the minor groove of DNA remains free in CoPc-DNA complexes. CoPc does not bind with the most important group for metal coordinating to DNA in the major groove (N7 guanine). We completely excluded the intercalation binding model. The planes of phthalocyanines in CoPc-DNA complexes are oriented predominantly normal to the axis of the DNA helix. DNA rigidity (persistent length) does not change. This follows from the data on the measurement of the optical anisotropy and intrinsic viscosity of DNA in complexes.

3.
J Biomol Struct Dyn ; 19(6): 1053-62, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12023807

ABSTRACT

We have studied structural changes in DNA/protein complexes using the CD spectroscopy, upon the interaction of HMG1-domains with calf thymus DNA at different ionic strengths. HMG1 protein isolated from calf thymus and recombinant HMG1-(A+B) protein were used. Recombinant protein HMG1-(A+B) represents a rat HMG1 lacking C-terminal acidic tail. At low ionic strength (15 mM NaCl) we observed similar behavior of both proteins upon interaction with DNA. Despite this, at higher ionic strength (150 mM NaCl) their interaction with DNA leads to a completely different structure of the complexes. In the case of HMG1-(A+B)/DNA complexes we observed the appearance of DNA fractions possessing very high optical activity. This could be a result of formation of the highly-ordered DNA structures modulated by the interaction with HMG1-domains. Thus the comparison studies of HMG1 and HMG1-(A+B) interaction with DNA show that negatively charged C-terminal tail of HMG1 modulates interaction of the protein with DNA. The striking difference of the behaviour of these two systems allows us to explain the functional role of multiple HMG1 domains in some regulatory and architectural proteins.


Subject(s)
HMGB1 Protein/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cattle , Circular Dichroism , DNA, Superhelical/metabolism , HMGB1 Protein/genetics , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Rats , Recombinant Proteins/metabolism , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...