Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 252: 153247, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32768683

ABSTRACT

In the nitrogen fixation process, iron plays a vital role by being part of many symbiotic proteins, such as nitrogenase and leghemoglobin, in an active symbiosis. Excess or insufficient iron in active nitrogen fixation negatively affects the entire process. In Lotus japonicus nodules, ferritin is expressed at the initial stages of nodule development and increases at the nodule senescence stage to mobilize iron release during that stage. In this study, we investigated the effects of overexpressing and suppressing ferritin on nitrogen fixation. Acetylene reduction activity revealed that nitrogen fixation is affected by the overexpression of ferritin at high iron concentrations, but at low iron concentrations, higher nitrogen fixation was observed in ferritin-suppressed plants. qRT-PCR data indicated that suppression of ferritin in nodules induces antioxidant genes, such as superoxide dismutase, dehydroascorbate reductase and ascorbate peroxidase, to detoxify reactive oxygen species. Our data suggest that suppressing ferritin in the nodules is effective for higher nitrogen fixation under iron deficient conditions. Overaccumulated ferritin in nodule is effective under the higher iron conditions, such as senescence state.


Subject(s)
Ferritins/metabolism , Iron/administration & dosage , Lotus/metabolism , Nitrogen Fixation , Dose-Response Relationship, Drug , Root Nodules, Plant/metabolism
2.
Plant Biotechnol (Tokyo) ; 35(2): 123-129, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-31819714

ABSTRACT

Rhizobia were isolated from the root nodules of Clitoria ternatea in Thailand. The phylogeny of the isolates was investigated using 16S rDNA and the internal transcribed spacer (ITS) region from 16S to 23S rDNA. The phylogenetic tree of the 16S rDNA showed that ten of the eleven isolates belonged to Bradyrhizobium elkanii, and one belonged to Bradyrhizobium japonicum. The topology of the ITS tree was similar to that of 16S rDNA. The acetylene reduction activity was higher for the nodules inoculated with the isolated B. elkanii strains than for those inoculated with B. japonicum strains. When C. ternatea plants were inoculated with various Bradyrhizobium USDA strains isolated from Glycine max, C. ternatea formed many effective nodules with B. elkanii, especially USDA61. However, acetylene reduction activity per plant and the growth were higher in C. ternatea inoculated with our isolates. From these data we propose that effective rhizobia inoculant were identified for C. ternatea cultivation.

SELECTION OF CITATIONS
SEARCH DETAIL
...