Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Virol ; 96(5): e0172521, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34985999

ABSTRACT

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Respiratory Tract Diseases , Animals , Antibodies, Viral , Disease Models, Animal , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza Vaccines/standards , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Respiratory Tract Diseases/immunology , Swine , Vaccines, Inactivated/immunology
2.
J Infect Dis ; 221(4): 636-646, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31745552

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) infection causes significant morbidity in hematopoietic cell transplant (HCT) recipients. However, antibody responses that correlate with recovery from RSV disease are not fully understood. METHODS: In this study, antibody repertoire in paired serum and nasal wash samples from acutely RSV-A-infected HCT recipients who recovered early (<14 days of RSV shedding) were compared with late-recovered patients (≥14 days of shedding) using gene fragment phage display libraries and surface plasmon resonance. RESULTS: Anti-F serum responses were similar between these 2 groups for antibody repertoires, neutralization titers, anti-F binding antibodies (prefusion and postfusion proteins), antibody avidity, and binding to specific antigenic sites. In contrast, nasal washes from early-recovered individuals demonstrated higher binding to F peptide containing p27. While the serum RSV G antibody repertoires in the 2 groups were similar, the strongest difference between early-recovered and late-recovered patients was observed in the titers of nasal wash antibodies, especially binding to the central conserved domain. Most importantly, a significantly higher antibody affinity to RSV G was observed in nasal washes from early-recovered individuals compared with late-recovered HCT recipients. CONCLUSIONS: These findings highlight the importance of mucosal antibodies in resolution of RSV-A infection in the upper respiratory tract.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Hematopoietic Stem Cell Transplantation , Respiratory Mucosa/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Transplant Recipients , Viral Envelope Proteins/immunology , Antibodies, Neutralizing/blood , Antibody Affinity , Humans , Immunoglobulin G/immunology , Immunoglobulin Idiotypes/immunology , Respiratory Syncytial Virus Infections/virology , Viral Fusion Proteins/immunology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...