Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 15(1): 106, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303952

ABSTRACT

Open science and open data within scholarly research programs are growing both in popularity and by requirement from grant funding agencies and journal publishers. A central component of open data management, especially on collaborative, multidisciplinary, and multi-institutional science projects, is documentation of complete and accurate metadata, workflow, and source code in addition to access to raw data and data products to uphold FAIR (Findable, Accessible, Interoperable, Reusable) principles. Although best practice in data/metadata management is to use established internationally accepted metadata schemata, many of these standards are discipline-specific making it difficult to catalog multidisciplinary data and data products in a way that is easily findable and accessible. Consequently, scattered and incompatible metadata records create a barrier to scientific innovation, as researchers are burdened to find and link multidisciplinary datasets. One possible solution to increase data findability, accessibility, interoperability, reproducibility, and integrity within multi-institutional and interdisciplinary projects is a centralized and integrated data management platform. Overall, this type of interoperable framework supports reproducible open science and its dissemination to various stakeholders and the public in a FAIR manner by providing direct access to raw data and linking protocols, metadata and supporting workflow materials.


Subject(s)
Data Management , Metadata , Interdisciplinary Research , Reproducibility of Results , Software
2.
Environ Sci Pollut Res Int ; 25(6): 5501-5513, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29218574

ABSTRACT

Heavy metal discharge from mining and smelting operations into aquatic ecosystems can cause long-term biological and ecological impacts. The upper Columbia River is highly contaminated with heavy metal wastes from nearby smelting operations in Trail, British Columbia, Canada, and to a lesser extent, Northport (Le Roi smelter), Washington, USA. Airborne emissions from the Trail operations were historically and are currently transported by prevailing winds down the Columbia River canyon, where particulate metals can be deposited into lakes and watersheds. In lakes, sediment cores contain records of past environmental conditions, providing a timeline of fundamental chemical and biological relationships within aquatic ecosystems, including records of airborne metal depositions. We analyzed trace metal concentrations (Ni, Cd, Zn, As, Cu, Sb, Pb, Hg) and Pb isotope compositions of sediment cores from six remote eastern Washington lakes to assess potential sources of atmospheric heavy metal deposition. Sediment cores displayed evidence to support trace metal loading as a direct consequence of smelting operations in Trail. Smelter contamination was detected 144 km downwind of the Trail Smelter. Cd, Sb, Pb (p < 0.001), and to a lesser extent As and Hg (p < 0.05) concentrations were correlated with Pb isotope compositions, suggesting that the Trail operations were likely the main source for these trace metals.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Lakes/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Trace Elements/analysis , British Columbia , Isotopes/analysis , Lead/analysis , Mining , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...