Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Med ; 14(1): 24, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35227293

ABSTRACT

BACKGROUND: Pancreatic neuroendocrine neoplasms (PanNENs) fall into two subclasses: the well-differentiated, low- to high-grade pancreatic neuroendocrine tumors (PanNETs), and the poorly-differentiated, high-grade pancreatic neuroendocrine carcinomas (PanNECs). While recent studies suggest an endocrine descent of PanNETs, the origin of PanNECs remains unknown. METHODS: We performed DNA methylation analysis for 57 PanNEN samples and found that distinct methylation profiles separated PanNENs into two major groups, clearly distinguishing high-grade PanNECs from other PanNETs including high-grade NETG3. DNA alterations and immunohistochemistry of cell-type markers PDX1, ARX, and SOX9 were utilized to further characterize PanNECs and their cell of origin in the pancreas. RESULTS: Phylo-epigenetic and cell-type signature features derived from alpha, beta, acinar, and ductal adult cells suggest an exocrine cell of origin for PanNECs, thus separating them in cell lineage from other PanNENs of endocrine origin. CONCLUSIONS: Our study provides a robust and clinically applicable method to clearly distinguish PanNECs from G3 PanNETs, improving patient stratification.


Subject(s)
Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Pancreatic Neoplasms , Adult , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , DNA Methylation , Humans , Neoplasm Grading , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology
2.
Plant Cell ; 29(12): 3085-3101, 2017 12.
Article in English | MEDLINE | ID: mdl-29133466

ABSTRACT

In prokaryotic systems, the translation initiation of many, though not all, mRNAs depends on interaction between a sequence element upstream of the start codon (the Shine-Dalgarno sequence [SD]) and a complementary sequence in the 3' end of the 16S rRNA (anti-Shine-Dalgarno sequence [aSD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations in the aSD coupled with genome-wide analysis of translation by ribosome profiling, we provide a global picture of SD-dependent translation in plastids. We observed a pronounced correlation between weakened predicted SD-aSD interactions and reduced translation efficiency. However, multiple lines of evidence suggest that the strength of the SD-aSD interaction is not the only determinant of the translational output of many plastid mRNAs. Finally, the translation efficiency of mRNAs with strong secondary structures around the start codon is more dependent on the SD-aSD interaction than weakly structured mRNAs. Thus, our data reveal the importance of the aSD in plastid translation initiation, uncover chloroplast genes whose translation is influenced by SD-aSD interactions, and provide insights into determinants of translation efficiency in plastids.


Subject(s)
Nicotiana/genetics , Plastids/genetics , Protein Biosynthesis/genetics , Alleles , Base Sequence , Codon, Initiator/genetics , Genome, Plant , Nucleic Acid Conformation , Phenotype , Plants, Genetically Modified , Point Mutation/genetics , Polyribosomes/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 16S/genetics
3.
Plant Cell Environ ; 35(10): 1860-78, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22512351

ABSTRACT

Arabidopsis thaliana is a geographically widely spread species consisting of local accessions differing both genetically and phenotypically. These differences may constitute environmental adaptations and a latitudinal cline in freezing tolerance has been shown previously. Many plants, including Arabidopsis, exhibit increased freezing tolerance after cold exposure (cold acclimation). Here we present evidence for geographical clines (both latitudinal and longitudinal) in acclimated (ACC) and non-acclimated (NA) freezing tolerance, estimated from electrolyte leakage measurements on 54 accessions. Leaf Pro contents were not correlated with freezing tolerance, while sugar contents (Glc, Fru, Suc, Raf) were in the ACC, but not the NA state. Expression levels of 14 cold-induced genes were investigated before and after 2 weeks of cold acclimation by quantitative RT-PCR. Expression of the CBF1, 2 and 3 genes was not correlated with freezing tolerance. The expression of some CBF-regulated (COR) genes, however, was correlated specifically with ACC freezing tolerance. A tight correlation between CBF and COR gene expression was only observed under non-acclimating conditions, where CBF and COR expression were also correlated with the expression of PRR5, a component of the circadian clock. Collectively, this study sheds new light on the molecular determinants of plant-freezing tolerance and cold acclimation and their geographical dependence.


Subject(s)
Acclimatization/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Genetic Variation , Acclimatization/physiology , Arabidopsis/chemistry , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Carbohydrates/analysis , Cold Temperature , Freezing , Geography , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/physiology , Proline/analysis , Species Specificity , Statistics as Topic
4.
Plant Physiol ; 158(4): 1534-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22353578

ABSTRACT

High-throughput sequencing and genotyping methods are dramatically increasing the number of observable genetic intraspecies differences that can be exploited as genetic markers. In addition, automated phenotyping platforms and "omics" profiling technologies further enlarge the set of quantifiable macroscopic and molecular traits at an ever-increasing pace. Combined, both lines of technological advances create unparalleled opportunities to identify candidate gene regions and, ideally, even single genes responsible for observed variations in a particular trait via association studies. However, as of yet, this new potential is not sufficiently matched by enabling software solutions to easily exploit this wealth of genotype/phenotype information. We have developed Matapax, a Web-based platform to address this need. Initially, we built the infrastructure to support association studies in Arabidopsis (Arabidopsis thaliana) based on several genotyping efforts covering up to 1,375 Arabidopsis accessions. Based on the user-supplied trait information, associated single-nucleotide polymorphism markers and single-nucleotide polymorphism-harboring or -neighboring genes are identified using both the GAPIT and EMMA libraries developed for R. Additional interrogation is facilitated by displaying candidate regions and genes in a genome browser and by providing relevant annotation information. In the future, we plan to broaden the scope of organisms to other plant species as more genotype/phenotype information becomes available. Matapax is freely available at http://matapax.mpimp-golm.mpg.de and can be accessed using any internet browser.


Subject(s)
Algorithms , Genome, Plant/genetics , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing/methods , Internet , Arabidopsis/genetics , Quantitative Trait, Heritable , Time Factors
5.
BMC Genomics ; 11: 188, 2010 Mar 20.
Article in English | MEDLINE | ID: mdl-20302660

ABSTRACT

BACKGROUND: Natural accessions of Arabidopsis thaliana are characterized by a high level of phenotypic variation that can be used to investigate the extent and mode of selection on the primary metabolic traits. A collection of 54 A. thaliana natural accession-derived lines were subjected to deep genotyping through Single Feature Polymorphism (SFP) detection via genomic DNA hybridization to Arabidopsis Tiling 1.0 Arrays for the detection of selective sweeps, and identification of associations between sweep regions and growth-related metabolic traits. RESULTS: A total of 1,072,557 high-quality SFPs were detected and indications for 3,943 deletions and 1,007 duplications were obtained. A significantly lower than expected SFP frequency was observed in protein-, rRNA-, and tRNA-coding regions and in non-repetitive intergenic regions, while pseudogenes, transposons, and non-coding RNA genes are enriched with SFPs. Gene families involved in plant defence or in signalling were identified as highly polymorphic, while several other families including transcription factors are depleted of SFPs. 198 significant associations between metabolic genes and 9 metabolic and growth-related phenotypic traits were detected with annotation hinting at the nature of the relationship. Five significant selective sweep regions were also detected of which one associated significantly with a metabolic trait. CONCLUSIONS: We generated a high density polymorphism map for 54 A. thaliana accessions that highlights the variability of resistance genes across geographic ranges and used it to identify selective sweeps and associations between metabolic genes and metabolic phenotypes. Several associations show a clear biological relationship, while many remain requiring further investigation.


Subject(s)
Arabidopsis/genetics , Genome, Plant , Polymorphism, Single Nucleotide , Arabidopsis/growth & development , Arabidopsis/metabolism , Chromosome Mapping , DNA, Plant/genetics , Genetics, Population , Genotype , Multigene Family , Polymorphism, Genetic , Quantitative Trait, Heritable , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...