Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
ACS Nano ; 18(27): 17630-17641, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38924391

ABSTRACT

Osteoporosis disrupts the fine-tuned balance between bone formation and resorption, leading to reductions in bone quantity and quality and ultimately increasing fracture risk. Prevention and treatment of osteoporotic fractures is essential for reductions in mortality, morbidity, and the economic burden, particularly considering the aging global population. Extreme bone loss that mimics time-accelerated osteoporosis develops in the paralyzed limbs following complete spinal cord injury (SCI). In vitro nanoscale vibration (1 kHz, 30 or 90 nm amplitude) has been shown to drive differentiation of mesenchymal stem cells toward osteoblast-like phenotypes, enhancing osteogenesis and inhibiting osteoclastogenesis simultaneously. Here, we develop and characterize a wearable device designed to deliver and monitor continuous nanoamplitude vibration to the hindlimb long bones of rats with complete SCI. We investigate whether a clinically feasible dose of nanovibration (two 2 h/day, 5 days/week for 6 weeks) is effective at reversing the established SCI-induced osteoporosis. Laser interferometry and finite element analysis confirmed transmission of nanovibration into the bone, and microcomputed tomography and serum bone formation and resorption markers assessed effectiveness. The intervention did not reverse SCI-induced osteoporosis. However, serum analysis indicated an elevated concentration of the bone formation marker procollagen type 1 N-terminal propeptide (P1NP) in rats receiving 40 nm amplitude nanovibration, suggesting increased synthesis of type 1 collagen, the major organic component of bone. Therefore, enhanced doses of nanovibrational stimulus may yet prove beneficial in attenuating/reversing osteoporosis, particularly in less severe forms of osteoporosis.


Subject(s)
Osteoporosis , Spinal Cord Injuries , Vibration , Animals , Rats , Osteoporosis/pathology , Osteoporosis/prevention & control , Rats, Sprague-Dawley , X-Ray Microtomography , Osteogenesis/drug effects , Female , Wearable Electronic Devices , Nanotechnology
2.
Sci Rep ; 14(1): 13364, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862597

ABSTRACT

This study aims to take higher-education students as examples to understand and compare artistic and engineering mindsets in creative processes using EEG. Fifteen Master of Fine Arts (MFA) visual arts and fifteen Master of Engineering (MEng) design engineering students were recruited and asked to complete alternative uses tasks wearing an EEG headset. The results revealed that (1) the engineering-mindset students responded to creative ideas faster than artistic-mindset students. (2) Although in creative processes both artistic- and engineering-mindset students showed Theta, Alpha, and Beta wave activity, the active brain areas are slightly different. The active brain areas of artistic-mindset students in creative processes are mainly in the frontal and occipital lobes; while the whole brain (frontal, oriental, temporal, and occipital lobes) was active in creative processes of engineering-mindset students. (3) During the whole creative process, the brain active level of artistic-mindset students was higher than that of engineering-mindset students. The results of this study fills gaps in existing research where only active brain areas and band waves were compared between artistic- and engineering-mindset students in creative processes. For quick thinking in terms of fluency of generating creative ideas, engineering students have an advantage in comparison to those from the visual arts. Also, the study provided more evidence that mindset can affect the active levels of the brain areas. Finally, this study provides educators with more insights on how to stimulate students' creative ability.


Subject(s)
Creativity , Electroencephalography , Engineering , Students , Humans , Engineering/education , Female , Male , Young Adult , Brain/physiology , Adult , Art
3.
Adv Mater ; 36(23): e2310789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38253339

ABSTRACT

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-ß1) is bound. rLTBP1 facilitates the interaction of LAP with integrin ß1 and the subsequent mechanically driven release of TGF-ß1 to stimulate canonical TGF-ß1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.


Subject(s)
Osteogenesis , Transforming Growth Factor beta1 , Animals , Humans , Transforming Growth Factor beta1/metabolism , Fibronectins/metabolism , Fibronectins/chemistry , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/chemistry , Bone Regeneration , Surface Properties , Integrins/metabolism , Protein Binding , Integrin beta1/metabolism , Signal Transduction
4.
Article in English | MEDLINE | ID: mdl-37718477

ABSTRACT

There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.

5.
NPJ Regen Med ; 8(1): 54, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773177

ABSTRACT

During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 µg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses.

6.
Sci Rep ; 13(1): 5213, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997577

ABSTRACT

This paper proposes a new method for real-time terrain recognition-based navigation for mobile robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories in real-time to achieve safe and efficient navigation in complex terrains. However, current methods largely depend on visual and IMU (inertial measurement units) that demand high computational resources for real-time applications. In this paper, a real-time terrain identification-based navigation method is proposed using an on-board tapered whisker-based reservoir computing system. The nonlinear dynamic response of the tapered whisker was investigated in various analytical and Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical simulations and experiments were cross-checked with each other to verify that whisker sensors can separate different frequency signals directly in the time domain and demonstrate the computational superiority of the proposed system, and that different whisker axis locations and motion velocities provide variable dynamical response information. Terrain surface-following experiments demonstrated that our system could accurately identify changes in the terrain in real-time and adjust its trajectory to stay on specific terrain.

7.
J Intell ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36826937

ABSTRACT

The reason why people have different creativity quality levels may depend on their different performances relating to other cognitive factors that are important for creativity. This study was designed to identify the performance of three cognitive factors (recall, association, and combination) that a designer may use in a creative process and then identify how the differing performance for these cognitive factors will affect creativity quality levels. Seventy-one participants were recruited to undertake a design task and complete a semi-structured interview. The results indicate that, in a creative design process, similar performances in recall, association, and combination can result in differences in creativity quality level.

8.
Front Neurosci ; 16: 951272, 2022.
Article in English | MEDLINE | ID: mdl-36532268

ABSTRACT

Introduction: Neurotechnology approaches, such as electroencephalography (EEG), can aid understanding of the cognitive processes behind creativity. Methods: To identify and compare the EEG characteristics of creativity-related cognitive factors (remote association, common association, combination, recall, and retrieval), 30 participants were recruited to conduct an EEG induction study. Results: From the event-related potential (ERP) results and spectral analysis, the study supports that creativity is related to the frontal lobe areas of the brain and common association is an unconscious process. Discussion: The results help explain why some creativity-related cognitive factors are involved either more or less readily than others in the creative design process from workload aspects. This study identifies the part of the brain that is involved in the combination cognitive factor and detects the ERP results on cognitive factors. This study can be used by designers and researchers to further understand the cognitive processes of creativity.

9.
J Intell ; 10(4)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36412783

ABSTRACT

Data-driven design is a process to reuse data sources and provide valuable information to provoke creative ideas in the stages of design. However, existing semantic networks for design creativity are built on data sources restricted to technological and scientific information. Existing studies build the edges of a semantic network on statistical or semantic relationships, which are less likely to make full use of the benefits from both types of relationships and discover implicit knowledge for design creativity. Therefore, to overcome the gaps, we constructed WikiLink, a semantic network based on Wikipedia, which is an integrated source of general knowledge and specific knowledge, with broad coverage of disciplines. The weight in WikiLink fuses both the statistic and semantic weights between concepts instead of simply one type of weight, and four algorithms are developed for inspiring new ideas. Evaluation experiments are undertaken, and the results show that the network is characterised by high coverage of terms, relationships and disciplines, which demonstrates and supports the network's effectiveness and usefulness. A demonstration and case study results indicate that WikiLink can serve as an idea generation tool for creativity in conceptual design. The source code of WikiLink and the backend data are provided open-source for more users to explore and develop.

10.
J Intell ; 10(4)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36278595

ABSTRACT

There are many facets to creativity, and the topic has a profound impact on society. Substantial and sustained study on creativity has been undertaken, and much is now known about the fundamentals and how creativity can be augmented. To draw these elements together, a framework was developed called the creativity diamond, formulated on the basis of reviews of prior work, as well as the consideration of 20 PhD studies on the topics of creativity, design, innovation, and product development. The framework embodies the principles that quantity of ideas breeds quality through selection, and that a range of creativity tools can provoke additional ideas to augment our innate creativity. The creativity diamond proposed is a tool consisting of a divergent phase associated with the development of many distinctive ideas and a convergent phase associated with the refinement of ideas. The creativity diamond framework can be used to prompt and help select which tool or approach to use in a creative environment for innovative tasks. The framework has now been used by many students and professionals in diverse contexts.

11.
Biomaterials ; 280: 121263, 2022 01.
Article in English | MEDLINE | ID: mdl-34810036

ABSTRACT

Post-operative infection is a major complication in patients recovering from orthopaedic surgery. As such, there is a clinical need to develop biomaterials for use in regenerative surgery that can promote mesenchymal stem cell (MSC) osteospecific differentiation and that can prevent infection caused by biofilm-forming pathogens. Nanotopographical approaches to pathogen control are being identified, including in orthopaedic materials such as titanium and its alloys. These topographies use high aspect ratio nanospikes or nanowires to prevent bacterial adhesion but these features also significantly reduce MSC adhesion and activity. Here, we use a poly (ethyl acrylate) (PEA) polymer coating on titanium nanowires to spontaneously organise fibronectin (FN) and to deliver bone morphogenetic protein 2 (BMP2) to enhance MSC adhesion and osteospecific signalling. Using a novel MSC-Pseudomonas aeruginosa co-culture, we show that the coated nanotopographies protect MSCs from cytotoxic quorum sensing and signalling molecules, enhance MSC adhesion and osteoblast differentiation and reduce biofilm formation. We conclude that the PEA polymer-coated nanotopography can both support MSCs and prevent pathogens from adhering to a biomaterial surface, thus protecting from biofilm formation and bacterial infection, and supporting osteogenic repair.


Subject(s)
Fibronectins , Mesenchymal Stem Cells , Bacterial Adhesion , Biofilms , Cell Adhesion , Cell Differentiation , Fibronectins/metabolism , Humans , Osteogenesis , Virulence Factors/metabolism
12.
Sci Rep ; 11(1): 22741, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815449

ABSTRACT

Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFß1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Coculture Techniques/methods , Osteoclasts/cytology , Osteogenesis , Vibration , Bone Marrow Cells/metabolism , Humans , Nanotechnology , Osteoclasts/metabolism , Osteoclasts/pathology
13.
Sci Adv ; 7(9)2021 02.
Article in English | MEDLINE | ID: mdl-33637520

ABSTRACT

Bioactive metabolites have wide-ranging biological activities and are a potential source of future research and therapeutic tools. Here, we use nanovibrational stimulation to induce osteogenic differentiation of mesenchymal stem cells, in the absence of off-target, nonosteogenic differentiation. We show that this differentiation method, which does not rely on the addition of exogenous growth factors to culture media, provides an artifact-free approach to identifying bioactive metabolites that specifically and potently induce osteogenesis. We first identify a highly specific metabolite, cholesterol sulfate, an endogenous steroid. Next, a screen of other small molecules with a similar steroid scaffold identified fludrocortisone acetate with both specific and highly potent osteogenic-inducing activity. Further, we implicate cytoskeletal contractility as a measure of osteogenic potency and cell stiffness as a measure of specificity. These findings demonstrate that physical principles can be used to identify bioactive metabolites and then enable optimization of metabolite potency can be optimized by examining structure-function relationships.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation , Mesenchymal Stem Cells/metabolism
14.
Biochem J ; 477(17): 3349-3366, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32941644

ABSTRACT

Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.


Subject(s)
Cell Differentiation , Cell Proliferation , Immunologic Factors , Immunomodulation , Mesenchymal Stem Cells/metabolism , Animals , Humans , Immunologic Factors/metabolism , Immunologic Factors/therapeutic use
15.
ACS Nano ; 14(8): 10027-10044, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32658450

ABSTRACT

There is a pressing clinical need to develop cell-based bone therapies due to a lack of viable, autologous bone grafts and a growing demand for bone grafts in musculoskeletal surgery. Such therapies can be tissue engineered and cellular, such as osteoblasts, combined with a material scaffold. Because mesenchymal stem cells (MSCs) are both available and fast growing compared to mature osteoblasts, therapies that utilize these progenitor cells are particularly promising. We have developed a nanovibrational bioreactor that can convert MSCs into bone-forming osteoblasts in two- and three-dimensional, but the mechanisms involved in this osteoinduction process remain unclear. Here, to elucidate this mechanism, we use increasing vibrational amplitude, from 30 nm (N30) to 90 nm (N90) amplitudes at 1000 Hz and assess MSC metabolite, gene, and protein changes. These approaches reveal that dose-dependent changes occur in MSCs' responses to increased vibrational amplitude, particularly in adhesion and mechanosensitive ion channel expression and that energetic metabolic pathways are activated, leading to low-level reactive oxygen species (ROS) production and to low-level inflammation as well as to ROS- and inflammation-balancing pathways. These events are analogous to those that occur in the natural bone-healing processes. We have also developed a tissue engineered MSC-laden scaffold designed using cells' mechanical memory, driven by the stronger N90 stimulation. These mechanistic insights and cell-scaffold design are underpinned by a process that is free of inductive chemicals.


Subject(s)
Mesenchymal Stem Cells , Cell Differentiation , Humans , Inflammation , Osteogenesis , Reactive Oxygen Species , Tissue Engineering , Tissue Scaffolds
16.
Mater Sci Eng C Mater Biol Appl ; 113: 110966, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32487385

ABSTRACT

The engineering of biomaterial surfaces and scaffolds for specific biomedical and clinical application is of growing interest. Certain functionalised surfaces can capture and deliver bioactive molecules, such as growth factors (GF), enhancing the clinical efficacy of such systems. With a custom-made plasma polymerisation reactor described here we have developed bioactive polymer coatings based on poly(ethyl acrylate) (PEA). This remarkable polymer unfolds fibronectin (FN) upon adsorption to allow the GF binding region of FN to sequester and present GFs with high efficiency. We systematically evaluate process conditions and their impact on plasma polymerised PEA coatings and characterise the effect of plasma power and deposition time on thickness, wettability and chemical composition of the coatings. We demonstrate that functional substrate roughness can be maintained after deposition of the polymer coatings. Importantly, we show that coatings deposited at different conditions all maintain a similar or better bioactivity than spin coated PEA references. We show that in PEA plasma polymerised coatings FN assembles into nanonetworks with high availability of integrin and GF binding regions that sequester bone morphogenetic protein-2 (BMP-2). We also report similar mesenchymal stem cell adhesion behaviour, as characterised by focal adhesions, and differentiation potential on BMP-2 coated surfaces, regardless of plasma deposition conditions. This is a potent and versatile technology that can help facilitate the use of GFs in clinical applications.


Subject(s)
Acrylic Resins/chemistry , Coated Materials, Biocompatible/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Nanotechnology , Plasma Gases/chemistry , Adsorption , Bone Morphogenetic Protein 2/chemistry , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Fibronectins/chemistry , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Surface Properties
17.
J Biosci Bioeng ; 129(3): 379-386, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31623950

ABSTRACT

Bacterial biofilms pose a significant burden in both healthcare and industrial environments. With the limited effectiveness of current biofilm control strategies, novel or adjunctive methods in biofilm control are being actively pursued. Reported here, is the first evidence of the application of nanovibrational stimulation (nanokicking) to reduce the biofilm formation of Pseudomonas aeruginosa. Nanoscale vertical displacements (approximately 60 nm) were imposed on P. aeruginosa cultures, with a significant reduction in biomass formation observed at frequencies between 200 and 4000 Hz at 24 h. The optimal reduction of biofilm formation was observed at 1 kHz, with changes in the physical morphology of the biofilms. Scanning electron microscope imaging of control and biofilms formed under nanovibrational stimulation gave indication of a reduction in extracellular matrix (ECM). Quantification of the carbohydrate and protein components of the ECM was performed and showed a significant reduction at 24 h at 1 kHz frequency. To model the forces being exerted by nanovibrational stimulation, laser interferometry was performed to measure the amplitudes produced across the Petri dish surfaces. Estimated peak forces on each cell, associated with the nanovibrational stimulation technique, were calculated to be in the order of 10 pN during initial biofilm formation. This represents a potential method of controlling microbial biofilm formation in a number of important settings in industry and medical related processes.


Subject(s)
Biofilms , Pseudomonas aeruginosa/physiology , Biomass , Extracellular Matrix/metabolism , Microscopy, Electron, Scanning , Nanostructures , Vibration
18.
Sci Rep ; 9(1): 12944, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506561

ABSTRACT

In regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction. With the increased interest in mechanical stimulation of cells and huge potential for clinical use, it is apparent that researchers and clinicians require a scalable bioreactor system that provides consistently reproducible results with a simple turnkey approach. A novel bioreactor system is presented that consists of: a bioreactor vibration plate, calibrated and optimised for nanometre vibrations at 1 kHz, a power supply unit, which supplies a 1 kHz sine wave signal necessary to generate approximately 30 nm of vibration amplitude, and custom 6-well cultureware with toroidal shaped magnets incorporated in the base of each well for conformal attachment to the bioreactor's magnetic vibration plate. The cultureware and vibration plate were designed using finite element analysis to determine the modal and harmonic responses, and validated by interferometric measurement. This helps ensure that the vibration plate and cultureware, and thus collagen and MSCs, all move as a rigid body, avoiding large deformations close to the resonant frequency of the vibration plate and vibration damping beyond the resonance. Assessment of osteogenic protein expression was performed to confirm differentiation of MSCs after initial biological experiments with the system, as well as atomic force microscopy of the 3D gel constructs during vibrational stimulation to verify that strain hardening of the gel did not occur. This shows that cell differentiation was the result of the nanovibrational stimulation provided by the bioreactor alone, and that other cell differentiating factors, such as stiffening of the collagen gel, did not contribute.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Cell Differentiation , Mechanotransduction, Cellular , Mesenchymal Stem Cells/cytology , Osteogenesis , Tissue Engineering/methods , Cells, Cultured , Equipment Design , Humans
19.
Sci Rep ; 9(1): 3973, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30850714

ABSTRACT

4D printing has the potential to create complex 3D geometries which are able to react to environmental stimuli opening new design possibilities. However, the vast majority of 4D printing approaches use polymer based materials, which limits the operational temperature. Here, we present a novel multi-metal electrochemical 3D printer which is able to fabricate bimetallic geometries and through the selective deposition of different metals, temperature responsive behaviour can thus be programmed into the printed structure. The concept is demonstrated through a meniscus confined electrochemical 3D printing approach with a multi-print head design with nickel and copper used as exemplar systems but this is transferable to other deposition solutions. Improvements in deposition speed (34% (Cu)-85% (Ni)) are demonstrated with an electrospun nanofibre nib compared to a sponge based approach as the medium for providing hydrostatic back pressure to balance surface tension in order to form a electrolyte meniscus stable. Scanning electron microscopy, X-ray computed tomography and energy dispersive X-ray spectroscopy shows that bimetallic structures with a tightly bound interface can be created, however convex cross sections are created due to uneven current density. Analysis of the thermo-mechanical properties of the printed strips shows that mechanical deformations can be generated in Cu-Ni strips at temperatures up to 300 °C which is due to the thermal expansion coefficient mismatch generating internal stresses in the printed structures. Electrical conductivity measurements show that the bimetallic structures have a conductivity between those of nanocrystalline copper (5.41 × 106 S.m-1) and nickel (8.2 × 105 S.m-1). The potential of this novel low-cost multi-metal 3D printing approach is demonstrated with the thermal actuation of an electrical circuit and a range of self-assembling structures.

20.
Adv Sci (Weinh) ; 6(2): 1800361, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30693176

ABSTRACT

While new biomaterials for regenerative therapies are being reported in the literature, clinical translation is slow. Some existing regenerative approaches rely on high doses of growth factors, such as bone morphogenetic protein-2 (BMP-2) in bone regeneration, which can cause serious side effects. An ultralow-dose growth factor technology is described yielding high bioactivity based on a simple polymer, poly(ethyl acrylate) (PEA), and mechanisms to drive stem cell differentiation and bone regeneration in a critical-sized murine defect model with translation to a clinical veterinary setting are reported. This material-based technology triggers spontaneous fibronectin organization and stimulates growth factor signalling, enabling synergistic integrin and BMP-2 receptor activation in mesenchymal stem cells. To translate this technology, plasma-polymerized PEA is used on 2D and 3D substrates to enhance cell signalling in vitro, showing the complete healing of a critical-sized bone injury in mice in vivo. Efficacy is demonstrated in a Münsterländer dog with a nonhealing humerus fracture, establishing the clinical translation of advanced ultralow-dose growth factor treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...