Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Muscle Nerve ; 61(2): 243-252, 2020 02.
Article in English | MEDLINE | ID: mdl-31724205

ABSTRACT

INTRODUCTION: Critical limitations of processed acellular nerve allograft (PNA) are linked to Schwann cell function. Side-to-side bridge grafting may enhance PNA neurotrophic potential. METHODS: Sprague-Dawley rats underwent tibial nerve transection and immediate repair with 20-mm PNA (n = 33) or isograft (ISO; n = 9) or 40-mm PNA (n = 33) or ISO (n = 9). Processed acellular nerve allograft groups received zero, one, or three side-to-side bridge grafts between the peroneal nerve and graft. Muscle weight, force generation, and nerve histomorphology were tested 20 weeks after repair. Selected animals underwent neuron back labeling with fluorescent dyes. RESULTS: Inner axon diameters, g-ratios, and axon counts were smaller in the distal vs proximal aspect of each graft (P < .05). Schwann cell counts were greater, with a lower proportion of senescent cells for groups with bridges (P < .05). Retrograde labeling demonstrated that 6.6% to 17.7% of reinnervating neurons were from the peroneal pool. DISCUSSION: Bridge grafting positively influenced muscle recovery and Schwann cell counts and senescence after long PNA nerve reconstruction.


Subject(s)
Nerve Tissue/transplantation , Nerve Transfer , Allografts , Animals , Cell Count , Cellular Senescence , Female , Muscle Contraction/physiology , Muscle, Skeletal/anatomy & histology , Nerve Regeneration/physiology , Organ Size , Peroneal Nerve/anatomy & histology , Peroneal Nerve/transplantation , Rats , Rats, Sprague-Dawley , Recovery of Function , Schwann Cells , Tibial Nerve/anatomy & histology , Tibial Nerve/injuries , Tibial Nerve/transplantation
2.
J Immunol ; 201(8): 2315-2330, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30201808

ABSTRACT

HSV type 1 (HSV-1)-specific CD8+ T cells protect from herpes infection and disease. However, the nature of protective CD8+ T cells in HSV-1 seropositive healthy asymptomatic (ASYMP) individuals (with no history of clinical herpes disease) remains to be determined. In this study, we compared the phenotype and function of HSV-specific CD8+ T cells from HLA-A*02:01-positive ASYMP and symptomatic (SYMP) individuals (with a documented history of numerous episodes of recurrent ocular herpetic disease). We report that although SYMP and ASYMP individuals have similar frequencies of HSV-specific CD8+ T cells, the "naturally" protected ASYMP individuals have a significantly higher proportion of multifunctional HSV-specific effector memory CD8+ T cells (CD73+CD45RAhighCCR7lowCD8+ effector memory RA (TEMRA) and CD73+CD45RAlowCCR7lowCD8+ effector memory (TEM) as compared with SYMP individuals. Similar to humans, HSV-1-infected ASYMP B6 mice had frequent multifunctional HSV-specific CD73+CD8+ T cells in the cornea, as compared with SYMP mice. Moreover, in contrast to wild type B6, CD73-/- deficient mice infected ocularly with HSV-1 developed more recurrent corneal herpetic infection and disease. This was associated with less functional CD8+ T cells in the cornea and trigeminal ganglia, the sites of acute and latent infection. The phenotypic and functional characteristics of HSV-specific circulating and in situ CD73+CD8+ T cells, demonstrated in both ASYMP humans and mice, suggest a positive role for effector memory CD8+ T cells expressing the CD73 costimulatory molecule in the protection against ocular herpes infection and disease. These findings are important for the development of safe and effective T cell-based herpes immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cornea/immunology , Eye Diseases/immunology , Herpes Simplex/immunology , Simplexvirus/physiology , T-Lymphocyte Subsets/immunology , Trigeminal Nerve/immunology , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Animals , Antigens, Viral/immunology , Asymptomatic Diseases , Cells, Cultured , Cytotoxicity, Immunologic , Disease Progression , HLA-A2 Antigen/metabolism , Humans , Immunologic Memory , Immunophenotyping , Leukocyte Common Antigens/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR7/metabolism
3.
J Virol ; 91(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28468883

ABSTRACT

Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8+ T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8+ T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8+ T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3+ CD8+ T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10-/- or CXCR3-/- deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10-/- mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8+ T cells (TEM) and tissue-resident memory CD8+ T cells (TRM), but not of central memory CD8+ T cells (TCM), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10-/- deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8+ T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease.IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8+ T cell responses to recurrent ocular herpesvirus infection and disease. Using a well-established murine model, in which HSV-1 reactivation in latently infected trigeminal ganglia was induced by UV-B light, we demonstrated that lack of either CXCL10 chemokine or its CXCR3 receptor compromised the mobilization of functional CD8+ TEM and CD8+ TRM cells within latently infected trigeminal ganglia following virus reactivation. This lack of T cell mobilization was associated with an increase in recurrent ocular herpesvirus infection and disease. Inversely, augmenting the amount of CXCL10 in trigeminal ganglia of latently infected CXCL10-deficient mice significantly restored the number of local antiviral CD8+ TEM and CD8+ TRM cells associated with protection against recurrent ocular herpes. Based on these findings, a novel "prime/pull" therapeutic ocular herpes vaccine strategy is proposed and discussed.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL10/metabolism , Herpes Simplex/immunology , Immunologic Memory , Receptors, CXCR3/metabolism , Simplexvirus/immunology , Animals , Chemokine CXCL10/deficiency , Cornea/immunology , Cornea/virology , Disease Models, Animal , Herpes Simplex/prevention & control , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR3/deficiency , Recurrence , Trigeminal Ganglion/immunology , Trigeminal Ganglion/virology
4.
J Immunol ; 199(1): 186-203, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28539429

ABSTRACT

HSV type 1 (HSV-1) is a prevalent human pathogen that infects >3.72 billion individuals worldwide and can cause potentially blinding recurrent corneal herpetic disease. HSV-1 establishes latency within sensory neurons of trigeminal ganglia (TG), and TG-resident CD8+ T cells play a critical role in preventing its reactivation. The repertoire, phenotype, and function of protective CD8+ T cells are unknown. Bolstering the apparent feeble numbers of CD8+ T cells in TG remains a challenge for immunotherapeutic strategies. In this study, a comprehensive panel of 467 HLA-A*0201-restricted CD8+ T cell epitopes was predicted from the entire HSV-1 genome. CD8+ T cell responses to these genome-wide epitopes were compared in HSV-1-seropositive symptomatic individuals (with a history of numerous episodes of recurrent herpetic disease) and asymptomatic (ASYMP) individuals (who are infected but never experienced any recurrent herpetic disease). Frequent polyfunctional HSV-specific IFN-γ+CD107a/b+CD44highCD62LlowCD8+ effector memory T cells were detected in ASYMP individuals and were primarily directed against three "ASYMP" epitopes. In contrast, symptomatic individuals have more monofunctional CD44highCD62LhighCD8+ central memory T cells. Furthermore, therapeutic immunization with an innovative prime/pull vaccine, based on priming with multiple ASYMP epitopes (prime) and neurotropic TG delivery of the T cell-attracting chemokine CXCL10 (pull), boosted the number and function of CD44highCD62LlowCD8+ effector memory T cells and CD103highCD8+ tissue-resident T cells in TG of latently infected HLA-A*0201-transgenic mice and reduced recurrent ocular herpes following UV-B-induced reactivation. These findings have profound implications in the development of T cell-based immunotherapeutic strategies to treat blinding recurrent herpes infection and disease.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpesvirus 1, Human/immunology , Immunologic Memory , Keratitis, Herpetic/immunology , Trigeminal Ganglion/immunology , Trigeminal Ganglion/virology , Virus Latency , Adult , Aged , Animals , CD8-Positive T-Lymphocytes/physiology , Chemokine CXCL10/immunology , Epitopes/chemistry , Epitopes/immunology , Epitopes/isolation & purification , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunization , Keratitis, Herpetic/therapy , Keratitis, Herpetic/virology , Male , Mice , Mice, Transgenic , Middle Aged , Recurrence , Trigeminal Ganglion/cytology , Young Adult
5.
J Virol ; 90(8): 3913-3928, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26842468

ABSTRACT

UNLABELLED: Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8(+)T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT(+)TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT(-)TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8(+)T cells in LAT(+)TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8(+)T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT(+)versus LAT(-)virus. Compared to CD8(+)T cells from LAT(-)TG, CD8(+)T cells from LAT(+)TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8(+)T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE: A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8(+)T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT(+)TG) than in a more restricted repertoire of functional HSV-specific CD8(+)T cells in the TG of HLA transgenic rabbits latently infected with LAT-null mutant (i.e., LAT(-)TG). These findings suggest that the HSV-1 LAT locus interferes with the host cellular immune response by shaping a broader repertoire of exhausted HSV-specific CD8(+)T cells within the latency/reactivation TG site.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HLA-A2 Antigen/immunology , Herpesvirus 1, Human/immunology , MicroRNAs/genetics , Virus Latency , Animals , Animals, Genetically Modified , Epitopes, T-Lymphocyte/immunology , Gene Expression , HLA-A2 Antigen/genetics , Humans , Immune Evasion , Lymphocyte Count , Rabbits , Trigeminal Ganglion/immunology , Trigeminal Ganglion/virology
6.
Vaccine ; 32(50): 6733-45, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25446827

ABSTRACT

Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Herpes Genitalis/prevention & control , Herpes Simplex/prevention & control , Herpesvirus Vaccines/immunology , Herpesvirus Vaccines/isolation & purification , Simplexvirus/immunology , Drug Discovery/methods , Herpes Genitalis/epidemiology , Herpes Simplex/epidemiology , Humans , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...