Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801212

ABSTRACT

Extending the lifetime and stability of wireless sensor networks (WSNs) through efficient energy consumption remains challenging. Though clustering has improved energy efficiency through cluster-head selection, its application is still complicated. In existing cluster-head selection methods, the locations where cluster-heads are desirable are first searched. Next, the nodes closest to these locations are selected as the cluster-heads. This location-based approach causes problems such as increased computation, poor selection accuracy, and the selection of duplicate nodes. To solve these problems, we propose the sampling-based spider monkey optimization (SMO) method. If the sampling population consists of nodes to select cluster-heads, the cluster-heads are selected among the nodes. Thus, the problems caused by different locations of nodes and cluster-heads are resolved. Consequently, we improve lifetime and stability of WSNs through sampling-based spider monkey optimization and energy-efficient cluster head selection (SSMOECHS). This study describes how the sampling method is used in basic SMO and how to select cluster-heads using sampling-based SMO. The experimental results are compared to similar protocols, namely low-energy adaptive clustering hierarchy centralized (LEACH-C), particle swarm optimization clustering protocol (PSO-C), and SMO based threshold-sensitive energy-efficient delay-aware routing protocol (SMOTECP), and the results are shown in both homogeneous and heterogeneous setups. In these setups, SSMOECHS improves network lifetime and stability periods by averages of 13.4%, 7.1%, 34.6%, and 1.8%, respectively.


Subject(s)
Wireless Technology , Algorithms , Animals , Atelinae , Computer Communication Networks , Computer Simulation , Humans
2.
Sensors (Basel) ; 19(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817213

ABSTRACT

Facial landmark detection has gained enormous interest for face-related applications due to its success in facial analysis tasks such as facial recognition, cartoon generation, face tracking and facial expression analysis. Many studies have been proposed and implemented to deal with the challenging problems of localizing facial landmarks from given images, including large appearance variations and partial occlusion. Studies have differed in the way they use the facial appearances and shape information of input images. In our work, we consider facial information within both global and local contexts. We aim to obtain local pixel-level accuracy for local-context information in the first stage and integrate this with knowledge of spatial relationships between each key point in a whole image for global-context information in the second stage. Thus, the pipeline of our architecture consists of two main components: (1) a deep network for local-context subnet that generates detection heatmaps via fully convolutional DenseNets with additional kernel convolution filters and (2) a dilated skip convolution subnet-a combination of dilated convolutions and skip-connections networks-that are in charge of robustly refining the local appearance heatmaps. Through this proposed architecture, we demonstrate that our approach achieves state-of-the-art performance on challenging datasets-including LFPW, HELEN, 300W and AFLW2000-3D-by leveraging fully convolutional DenseNets, skip-connections and dilated convolution architecture without further post-processing.


Subject(s)
Facial Recognition , Neural Networks, Computer , Algorithms , Databases, Factual , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...