Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Syst Biol ; 8 Suppl 4: S11, 2014.
Article in English | MEDLINE | ID: mdl-25521941

ABSTRACT

BACKGROUND: Network is a useful way for presenting many types of biological data including protein-protein interactions, gene regulations, cellular pathways, and signal transductions. We can measure nodes by their network features to infer their importance in the network, and it can help us identify central elements of biological networks. RESULTS: We introduce a novel Cytoscape plugin cytoHubba for ranking nodes in a network by their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, and Stress) based on shortest paths. Among the eleven methods, the new proposed method, MCC, has a better performance on the precision of predicting essential proteins from the yeast PPI network. CONCLUSIONS: CytoHubba provide a user-friendly interface to explore important nodes in biological networks. It computes all eleven methods in one stop shopping way. Besides, researchers are able to combine cytoHubba with and other plugins into a novel analysis scheme. The network and sub-networks caught by this topological analysis strategy will lead to new insights on essential regulatory networks and protein drug targets for experimental biologists. According to cytoscape plugin download statistics, the accumulated number of cytoHubba is around 6,700 times since 2010.


Subject(s)
Computational Biology/methods , Protein Interaction Mapping , Software , Saccharomyces cerevisiae/metabolism
2.
Gene ; 518(1): 42-51, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23274651

ABSTRACT

UNLABELLED: As is generally assumed, clusters in protein-protein interaction (PPI) networks perform specific, crucial functions in biological systems. Various network community detection methods have been developed to exploit PPI networks in order to identify protein complexes and functional modules. Due to the potential role of various regulatory modes in biological networks, a single method may just apply a single graph property and neglect communities highlighted by other network properties. This work presents a novel integration method to capture protein modules/protein complexes by multiple network features detected by different algorithms. The integration method is further implemented in a web-based platform with a highly effective interactive network analyzer. Conventionally adopted methods with different perspectives on network community detection (e.g., CPM, FastGreedy, HUNTER, MCL, LE, SpinGlass, and WalkTrap) are also executed simultaneously. Analytical results indicate that the proposed method performs better than the conventional ones. The proposed approach can capture the transcription and RNA splicing machineries from the yeast protein network. Meanwhile, proteins that are highly associated with each other, yet not described in both machineries are also identified. In sum, a protein that is closely connected to components of a known module or a complex in the network view implies the functional association among them. Importantly, our method can detect these unique network features, thus facilitating efforts to discover unknown components of functional modules/protein complexes. AVAILABILITY: Spotlight is freely accessible at http://hub.iis.sinica.edu.tw/spotlight. Video clips for a quick view of usage are available in the website online help page.


Subject(s)
Cluster Analysis , Fungal Proteins/metabolism , Protein Interaction Mapping/methods , Software , Algorithms , Fungal Proteins/genetics , Internet , RNA Splicing
3.
BMC Bioinformatics ; 11 Suppl 1: S25, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20122197

ABSTRACT

BACKGROUND: Many research results show that the biological systems are composed of functional modules. Members in the same module usually have common functions. This is useful information to understand how biological systems work. Therefore, detecting functional modules is an important research topic in the post-genome era. One of functional module detecting methods is to find dense regions in Protein-Protein Interaction (PPI) networks. Most of current methods neglect confidence-scores of interactions, and pay little attention on using gene expression data to improve their results. RESULTS: In this paper, we propose a novel hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles, and we name it HUNTER. Our method not only can extract functional modules from a weighted PPI network, but also use gene expression data as optional input to increase the quality of outcomes. Using HUNTER on yeast data, we found it can discover more novel components related with RNA polymerase complex than those existed methods from yeast interactome. And these new components show the close relationship with polymerase after functional analysis on Gene Ontology. CONCLUSION: A C++ implementation of our prediction method, dataset and supplementary material are available at http://hub.iis.sinica.edu.tw/Hunter/. Our proposed HUNTER method has been applied on yeast data, and the empirical results show that our method can accurately identify functional modules. Such useful application derived from our algorithm can reconstruct the biological machinery, identify undiscovered components and decipher common sub-modules inside these complexes like RNA polymerases I, II, III.


Subject(s)
Algorithms , Protein Interaction Mapping/methods , Proteins/chemistry , Databases, Protein
4.
Nucleic Acids Res ; 36(Web Server issue): W438-43, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18503085

ABSTRACT

One major task in the post-genome era is to reconstruct proteomic and genomic interacting networks using high-throughput experiment data. To identify essential nodes/hubs in these interactomes is a way to decipher the critical keys inside biochemical pathways or complex networks. These essential nodes/hubs may serve as potential drug-targets for developing novel therapy of human diseases, such as cancer or infectious disease caused by emerging pathogens. Hub Objects Analyzer (Hubba) is a web-based service for exploring important nodes in an interactome network generated from specific small- or large-scale experimental methods based on graph theory. Two characteristic analysis algorithms, Maximum Neighborhood Component (MNC) and Density of Maximum Neighborhood Component (DMNC) are developed for exploring and identifying hubs/essential nodes from interactome networks. Users can submit their own interaction data in PSI format (Proteomics Standards Initiative, version 2.5 and 1.0), tab format and tab with weight values. User will get an email notification of the calculation complete in minutes or hours, depending on the size of submitted dataset. Hubba result includes a rank given by a composite index, a manifest graph of network to show the relationship amid these hubs, and links for retrieving output files. This proposed method (DMNC || MNC) can be applied to discover some unrecognized hubs from previous dataset. For example, most of the Hubba high-ranked hubs (80% in top 10 hub list, and >70% in top 40 hub list) from the yeast protein interactome data (Y2H experiment) are reported as essential proteins. Since the analysis methods of Hubba are based on topology, it can also be used on other kinds of networks to explore the essential nodes, like networks in yeast, rat, mouse and human. The website of Hubba is freely available at http://hub.iis.sinica.edu.tw/Hubba.


Subject(s)
Protein Interaction Mapping , Software , Algorithms , Animals , Computer Graphics , Fungal Proteins/metabolism , Humans , Internet , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...