Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 15(9): 2374-2381, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32804474

ABSTRACT

RNA is emerging as a valuable target for the development of novel therapeutic agents. The rational design of RNA-targeting small molecules, however, has been hampered by the relative lack of methods for the analysis of small molecule-RNA interactions. Here, we present our efforts to develop such a platform using photoaffinity labeling. This technique, termed Photoaffinity Evaluation of RNA Ligation-Sequencing (PEARL-seq), enables the rapid identification of small molecule binding locations within their RNA targets and can provide information on ligand selectivity across multiple different RNAs. These data, when supplemented with small molecule SAR data and RNA probing data enable the construction of a computational model of the RNA-ligand structure, thereby enabling the rational design of novel RNA-targeted ligands.


Subject(s)
Azides/chemistry , Diazomethane/analogs & derivatives , Photoaffinity Labels/chemistry , RNA/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Azides/metabolism , Azides/radiation effects , Binding Sites , Diazomethane/metabolism , Diazomethane/radiation effects , Ligands , Molecular Docking Simulation , Photoaffinity Labels/metabolism , Photoaffinity Labels/radiation effects , Proof of Concept Study , RNA/chemistry , Reverse Transcription , Sequence Analysis, DNA
2.
J Med Chem ; 61(24): 11021-11036, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30407821

ABSTRACT

Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.


Subject(s)
Brain/drug effects , ERG1 Potassium Channel/metabolism , Muscular Atrophy, Spinal/drug therapy , Pyridazines/chemistry , Administration, Oral , Animals , Brain/metabolism , Cell Line , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Mice, Inbred C57BL , Motor Neurons/drug effects , Muscular Atrophy, Spinal/genetics , Pyridazines/pharmacology , Quantitative Structure-Activity Relationship , RNA Splicing , Rats, Sprague-Dawley , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics
3.
Chemistry ; 23(29): 6953-6958, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28257554

ABSTRACT

Selective G-quadruplex ligands offer great promise for the development of anti-cancer therapies. A novel series of divalent cationic naphthalene diimide ligands that selectively bind to the hybrid form of the human telomeric G-quadruplex in K+ buffer are described herein. We demonstrate that an imidazolium-bearing mannoside-conjugate is the most selective ligand to date for this quadruplex against several other quadruplex and duplex structures. We also show that a similarly selective methylpiperazine-bearing ligand was more toxic to HeLa cancer cells than doxorubicin, whilst exhibiting three times less toxicity towards fetal lung fibroblasts WI-38.


Subject(s)
G-Quadruplexes , Imides/chemistry , Naphthalenes/chemistry , Potassium/chemistry , Telomere/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Buffers , Calorimetry , Cell Line, Tumor , Cell Survival/drug effects , Circular Dichroism , Drug Design , HeLa Cells , Humans , Ligands , Microscopy, Confocal , Telomere/metabolism
6.
Nat Chem Biol ; 11(7): 511-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030728

ABSTRACT

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.


Subject(s)
Alternative Splicing , Muscular Atrophy, Spinal/drug therapy , RNA, Double-Stranded/agonists , Ribonucleoprotein, U1 Small Nuclear/agonists , Small Molecule Libraries/pharmacology , Survival of Motor Neuron 2 Protein/metabolism , Animals , Binding Sites , Disease Models, Animal , Female , Gene Expression , Humans , Mice , Mice, Transgenic , Models, Molecular , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/mortality , Muscular Atrophy, Spinal/pathology , Protein Binding/drug effects , Protein Stability/drug effects , Proteolysis , RNA Precursors/agonists , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Ribonucleoprotein, U1 Small Nuclear/chemistry , Ribonucleoprotein, U1 Small Nuclear/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Survival Analysis , Survival of Motor Neuron 2 Protein/chemistry , Survival of Motor Neuron 2 Protein/genetics
7.
J Med Chem ; 56(17): 7049-59, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23879431

ABSTRACT

Tankyrases 1 and 2 are members of the poly(ADP-ribose) polymerase (PARP) family of enzymes that modulate Wnt pathway signaling. While amide- and lactam-based nicotinamide mimetics that inhibit tankyrase activity, such as XAV939, are well-known, herein we report the discovery and evaluation of a novel nicotinamide isostere that demonstrates selectivity over other PARP family members. We demonstrate the utilization of lipophilic efficiency-based structure-efficiency relationships (SER) to rapidly drive the evaluation of this series. These efforts led to a series of selective, cell-active compounds with solubility, physicochemical, and in vitro properties suitable for further optimization.


Subject(s)
Amines/pharmacology , Tankyrases/antagonists & inhibitors , Triazoles/pharmacology , Amines/chemistry , Animals , Enzyme-Linked Immunosorbent Assay , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazoles/chemistry
8.
J Med Chem ; 56(16): 6495-511, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23844574

ABSTRACT

Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.


Subject(s)
Acetamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrimidinones/pharmacology , Tankyrases/antagonists & inhibitors , Acetamides/administration & dosage , Acetamides/chemistry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Enzyme Inhibitors/administration & dosage , Mice , Models, Molecular , Pyrimidinones/administration & dosage , Pyrimidinones/chemistry , Structure-Activity Relationship
9.
J Med Chem ; 55(3): 1127-36, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22260203

ABSTRACT

The Wnt signaling pathway is critical to the regulation of key cellular processes. When deregulated, it has been shown to play a crucial role in the growth and progression of multiple human cancers. The identification of small molecule modulators of Wnt signaling has proven challenging, largely due to the relative paucity of druggable nodes in this pathway. Several recent publications have identified small molecule inhibitors of the Wnt pathway, and tankyrase (TNKS) inhibition has been demonstrated to antagonize Wnt signaling via axin stabilization. Herein, we report the early hit assessment of a series of compounds previously reported to antagonize Wnt signaling. We report the biophysical, computational characterization, structure-activity relationship, and physicochemical properties of a novel series of [1,2,4]triazol-3-ylsulfanylmethyl)-3-phenyl-[1,2,4]oxadiazole inhibitors of TNKS1 and 2. Furthermore, a cocrystal structure of compound 24 complexed to TNKS1 demonstrates an alternate binding mode for PARP family member proteins that does not involve interactions with the nicotinamide binding pocket.


Subject(s)
Adenosine/metabolism , Models, Molecular , Oxadiazoles/chemical synthesis , Sulfides/chemical synthesis , Tankyrases/antagonists & inhibitors , Triazoles/chemical synthesis , Wnt Signaling Pathway/drug effects , Adenosine/chemistry , Binding Sites , Crystallography, X-Ray , HEK293 Cells , Humans , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Protein Conformation , Structure-Activity Relationship , Sulfides/chemistry , Sulfides/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
10.
J Org Chem ; 61(5): 1779-1786, 1996 Mar 08.
Article in English | MEDLINE | ID: mdl-11667049

ABSTRACT

Two new tris-melamine derivatives, triazine-thio-M(3) (5) (C(3)N(3)-2,4,6-[SCH(2)C(6)H(4)-3-N(CH(2)C(6)H(4)-4-C(CH(3))(3))COC(6)N(3)-2-NHC(3)N(3)(NH(2))(NHCH(2)CH(2)C(CH(3))(3))-5-Br](3)) and benzene-thio-M(3) (6) (C(6)H(3)-1,3,5-[SCH(2)C(6)H(4)-3-N(CH(2)C(6)H(4)-4-C(CH(3))(3))COC(6)H(3)-2-NHC(3)N(3)(NH(2))(NHCH(2)CH(2)C(CH(3))(3))-5-Br](3)), were synthesized by reactions of 2,4,6-trithiocyanuric acid and 1,3,5-trimercaptobenzene with a bromobenzyl melamine derivative 19 (BrCH(2)C(6)H(4)-3-N(CH(2)C(6)H(4)-4-C(CH(3))(3))COC(6)H(3)-2-NHC(3)N(3)(NH(2))(NHCH(2)CH(2)C(CH(3))(3))-5-Br). These two compounds formed stable and structurally well-defined 1 + 3 supramolecular aggregates with neohexyl isocyanurate (R'CA) (9) as shown by NMR spectroscopy and gel permeation chromatography. (1)H NMR competition experiments indicated that the stability of triazine-thio-M(3).(R'CA)(3) (1) was similar to that of benzene-thio-M(3).(R'CA)(3) (2). The order of stabilities of tris-melamine-based 1 + 3 complexes was hubM(3).(R'CA)(3) (3) > triazine-thio-M(3).(R'CA)(3) (1) approximately benzene-thio-M(3).(R'CA)(3) (2) > flexM(3).(R'CA)(3) (4). Computational simulations were also carried out on triazine-thio-M(3).(R'CA)(3) and hubM(3).(R'CA)(3) fully solvated in CHCl(3). Values of DP (the deviation from planarity of the cyanuric acid and melamine rosette) obtained from these simulations correlated correctly with the observed stabilities and suggested a structural reason why triazine-thio-M(3).(R'CA)(3) was less stable than hubM(3).(R'CA)(3).

SELECTION OF CITATIONS
SEARCH DETAIL
...