Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Ophthalmol ; 108(4): 522-529, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-37011991

ABSTRACT

PURPOSE: To assess intraocular pressure (IOP)-induced and gaze-induced optic nerve head (ONH) strains in subjects with high-tension glaucoma (HTG) and normal-tension glaucoma (NTG). DESIGN: Clinic-based cross-sectional study. METHODS: The ONH from one eye of 228 subjects (114 subjects with HTG (pre-treatment IOP≥21 mm Hg) and 114 with NTG (pre-treatment IOP<21 mm Hg)) was imaged with optical coherence tomography (OCT) under the following conditions: (1) OCT primary gaze, (2) 20° adduction from OCT primary gaze, (3) 20° abduction from OCT primary gaze and (4) OCT primary gaze with acute IOP elevation (to approximately 33 mm Hg). We then performed digital volume correlation analysis to quantify IOP-induced and gaze-induced ONH tissue deformations and strains. RESULTS: Across all subjects, adduction generated high effective strain (4.4%±2.3%) in the LC tissue with no significant difference (p>0.05) with those induced by IOP elevation (4.5%±2.4%); while abduction generated significantly lower (p=0.01) effective strain (3.1%±1.9%). The lamina cribrosa (LC) of HTG subjects exhibited significantly higher effective strain than those of NTG subjects under IOP elevation (HTG: 4.6%±1.7% vs NTG: 4.1%±1.5%, p<0.05). Conversely, the LC of NTG subjects exhibited significantly higher effective strain than those of HTG subjects under adduction (NTG: 4.9%±1.9% vs HTG: 4.0%±1.4%, p<0.05). CONCLUSION: We found that NTG subjects experienced higher strains due to adduction than HTG subjects, while HTG subjects experienced higher strain due to IOP elevation than NTG subjects-and that these differences were most pronounced in the LC tissue.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Low Tension Glaucoma , Optic Disk , Humans , Glaucoma, Open-Angle/diagnosis , Cross-Sectional Studies , Low Tension Glaucoma/diagnosis , Intraocular Pressure , Tomography, Optical Coherence
2.
Ophthalmology ; 130(1): 99-110, 2023 01.
Article in English | MEDLINE | ID: mdl-35964710

ABSTRACT

PURPOSE: To study the associations between optic nerve head (ONH) strains under intraocular pressure (IOP) elevation with retinal sensitivity in patients with glaucoma. DESIGN: Clinic-based cross-sectional study. PARTICIPANTS: Two hundred twenty-nine patients with primary open-angle glaucoma (subdivided into 115 patients with high-tension glaucoma [HTG] and 114 patients with normal-tension glaucoma [NTG]). METHODS: For 1 eye of each patient, we imaged the ONH using spectral-domain OCT under the following conditions: (1) primary gaze and (2) primary gaze with acute IOP elevation (to approximately 35 mmHg) achieved through ophthalmodynamometry. A 3-dimensional strain-mapping algorithm was applied to quantify IOP-induced ONH tissue strain (i.e., deformation) in each ONH. Strains in the prelaminar tissue (PLT), the retina, the choroid, the sclera, and the lamina cribrosa (LC) were associated (using linear regression) with measures of retinal sensitivity from the 24-2 Humphrey visual field test (Carl Zeiss Meditec). This was performed globally, then locally according to a previously published regionalization scheme. MAIN OUTCOME MEASURES: Associations between ONH strains and values of retinal sensitivity from visual field testing. RESULTS: For patients with HTG, we found (1) significant negative linear associations between ONH strains and retinal sensitivity (P < 0.001; on average, a 1% increase in ONH strains corresponded to a decrease in retinal sensitivity of 1.1 decibels [dB]), (2) that high-strain regions colocalized with anatomically mapped regions of high visual field loss, and (3) that the strongest negative associations were observed in the superior region and in the PLT. In contrast, for patients with NTG, no significant associations between strains and retinal sensitivity were observed except in the superotemporal region of the LC. CONCLUSIONS: We found significant negative associations between IOP-induced ONH strains and retinal sensitivity in a relatively large glaucoma cohort. Specifically, patients with HTG who experienced higher ONH strains were more likely to exhibit lower retinal sensitivities. Interestingly, this trend in general was less pronounced in patients with NTG, which could suggest a distinct pathophysiologic relationship between the two glaucoma subtypes.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Low Tension Glaucoma , Optic Disk , Humans , Visual Field Tests , Visual Fields , Cross-Sectional Studies , Tomography, Optical Coherence/methods , Low Tension Glaucoma/diagnosis , Intraocular Pressure , Vision Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...