Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Food Res Int ; 187: 114428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763678

ABSTRACT

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Subject(s)
Glucose , Lipid Metabolism , Nanoparticles , Polysaccharides , Rubus , Selenium , Humans , Selenium/chemistry , Hep G2 Cells , Polysaccharides/pharmacology , Polysaccharides/chemistry , Lipid Metabolism/drug effects , Glucose/metabolism , Nanoparticles/chemistry , Rubus/chemistry , Particle Size , Oxidative Stress/drug effects , Antioxidants/pharmacology , Signal Transduction/drug effects
2.
Int J Biol Macromol ; 244: 125311, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37302627

ABSTRACT

Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.


Subject(s)
Antioxidants , Liposomes , Humans , Liposomes/chemistry , Antioxidants/pharmacology , Caco-2 Cells , Polyethylene Glycols/chemistry
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-343223

ABSTRACT

<p><b>OBJECTIVE</b>To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines.</p><p><b>METHODS</b>The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope.</p><p><b>RESULTS</b>The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected.</p><p><b>CONCLUSIONS</b>KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted.</p>

SELECTION OF CITATIONS
SEARCH DETAIL
...