Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7999, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580713

ABSTRACT

The study of the brain by magnetic resonance imaging (MRI) in evolutionary analyses is still in its incipient stage, however, it is particularly useful as it allows us to analyze detailed anatomical images and compare brains of rare or otherwise inaccessible species, evolutionarily contextualizing possible differences, while at the same time being non-invasive. A good example is the lungfishes, sarcopterygians that are the closest living relatives of tetrapods and thus have an interesting phylogenetic position in the evolutionary conquest of the terrestrial environment. In the present study, we have developed a three-dimensional representation of the brain of the lungfish Protopterus annectens together with a rostrocaudal anatomical atlas. This methodological approach provides a clear delineation of the major brain subdivisions of this model and allows to measure both brain and ventricular volumes. Our results confirm that lungfish show neuroanatomical patterns reminiscent of those of extant basal sarcopterygians, with an evaginated telencephalon, and distinctive characters like a small optic tectum. These and additional characters uncover lungfish as a remarkable model to understand the origins of tetrapod diversity, indicating that their brain may contain significant clues to the characters of the brain of ancestral tetrapods.


Subject(s)
Biological Evolution , Fishes , Animals , Phylogeny , Brain/diagnostic imaging , Magnetic Resonance Imaging
2.
J Comp Neurol ; 531(11): 1126-1146, 2023 08.
Article in English | MEDLINE | ID: mdl-37071579

ABSTRACT

Islet-1 (Isl1) is one of the most conserved transcription factors in the evolution of vertebrates, due to its continuing involvement in such important functions as the differentiation of motoneurons, among other essential roles in cell fate in the forebrain. Although its functions are thought to be similar in all vertebrates, the knowledge about the conservation of its expression pattern in the central nervous system goes as far as teleosts, leaving the basal groups of actinopterygian fishes overlooked, despite their important phylogenetic position. In order to assess the extent of its conservation among vertebrates, we studied its expression pattern in the central nervous system of selected nonteleost actinopterygian fishes. By means of immunohistochemical techniques, we analyzed the Isl1 expression in the brain, spinal cord, and sensory ganglia of the cranial nerves of young adult specimens of the cladistian species Polypterus senegalus and Erpetoichthys calabaricus, the chondrostean Acipenser ruthenus, and the holostean Lepisosteus oculatus. We also detected the presence of the transcription factor Orthopedia and the enzymes tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) to better locate all the immunoreactive structures in the different brain areas and to reveal the possible coexpression with Isl1. Numerous conserved features in the expression pattern of Isl1 were observed in these groups of fishes, such as populations of cells in the subpallial nuclei, preoptic area, subparaventricular and tuberal hypothalamic regions, prethalamus, epiphysis, cranial motor nuclei and sensory ganglia of the cranial nerves, and the ventral horn of the spinal cord. Double labeling of TH and Isl1 was observed in cells of the preoptic area, the subparaventricular and tuberal hypothalamic regions, and the prethalamus, while virtually all motoneurons in the hindbrain and the spinal cord coexpressed ChAT and Isl1. Altogether, these results show the high degree of conservation of the expression pattern of the transcription factor Isl1, not only among fish, but in the subsequent evolution of vertebrates.


Subject(s)
Brain , Central Nervous System , Animals , Phylogeny , Central Nervous System/metabolism , Brain/metabolism , Fishes/metabolism , Choline O-Acetyltransferase/metabolism , Prosencephalon/metabolism , Cholinergic Agents/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...