Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742992

ABSTRACT

Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.

2.
Nat Commun ; 14(1): 1591, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949044

ABSTRACT

In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell population. The EMT signature coincides with PI3K/mTOR inactivation in the mesenchymal subtype. Conversely, the signature is suppressed in epithelial cells of the basal subtype which exhibits hyperactive PI3K/mTOR signalling. We further identify YBX1 phosphorylation, downstream of the PI3K/mTOR pathway, restraining basal-like cancer cell proliferation. In contrast, YBX1 acts as a safeguard against the proliferation-to-invasion switch in mesenchymal-like epithelial cancer cells, and its loss accentuates partial-EMT and in vivo invasion. Interestingly, phospho-YBX1 that is mutually exclusive to partial-EMT, emerges as a prognostic marker for overall patient outcomes. These findings create a unique opportunity to sensitise mesenchymal cancer cells to PI3K/mTOR inhibitors by shifting them towards a basal-like subtype as a promising therapeutic approach against HNC.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/genetics , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Movement , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
3.
Dev Neurobiol ; 83(1-2): 40-53, 2023 01.
Article in English | MEDLINE | ID: mdl-36373424

ABSTRACT

Neurodevelopmental disorders such as schizophrenia and autism are thought to involve an imbalance of excitatory and inhibitory signaling in the brain. Intrauterine growth restriction (IUGR) is a risk factor for these disorders, with IUGR onset occurring during critical periods of neurodevelopment. The aim of this study was to determine the impact of IUGR on excitatory and inhibitory neurons of the fetal neocortex and hippocampus. Fetal brains (n = 2) were first collected from an unoperated pregnant guinea pig at mid-gestation (32 days of gestation [dg]; term ∼67 dg) to visualize excitatory (Ctip2) and inhibitory (calretinin [CR] and somatostatin [SST]) neurons via immunohistochemistry. Chronic placental insufficiency (CPI) was then induced via radial artery ablation at 30 dg in another cohort of pregnant guinea pigs (n = 8) to generate IUGR fetuses (52 dg; n = 8); control fetuses (52 dg; n = 7) were from sham surgeries with no radial artery ablation. At 32 dg, Ctip2- and CR-immunoreactive (IR) cells had populated the cerebral cortex, whereas SST-IR cells had not, suggesting these neurons were yet to complete migration. At 52 dg, in IUGR versus control fetuses, there was a reduction in SST-IR cell density in the cerebral cortex (p = .0175) and hilus of the dentate gyrus (p = .0035) but not the striatum (p > .05). There was no difference between groups in the density of Ctip2-IR (cortex) or CR-IR (cortex, hippocampus) neurons (p > 0.05). Thus, we propose that an imbalance in inhibitory (SST-IR) and excitatory (Ctip2-IR) neurons in the IUGR fetal guinea pig brain could lead to excitatory/inhibitory dysfunction commonly seen in neurodevelopmental disorders such as autism and schizophrenia.


Subject(s)
Autistic Disorder , Schizophrenia , Animals , Female , Guinea Pigs , Pregnancy , Brain , Fetal Growth Retardation , Neurons , Placenta
4.
Front Neuroendocrinol ; 61: 100901, 2021 04.
Article in English | MEDLINE | ID: mdl-33493504

ABSTRACT

Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.


Subject(s)
Monocarboxylic Acid Transporters , Rodentia , Animals , Central Nervous System , Humans , Neurogenesis , Thyroid Hormones
5.
Int J Mol Sci ; 20(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060263

ABSTRACT

Squamous cell carcinomas (SCC), including cutaneous SCCs, are by far the most frequent cancers in humans, accounting for 80% of all newly diagnosed malignancies worldwide. The old dogma that SCC develops exclusively from stem cells (SC) has now changed to include progenitors, transit-amplifying and differentiated short-lived cells. Accumulation of specific oncogenic mutations is required to induce SCC from each cell population. Whilst as fewer as one genetic hit is sufficient to induce SCC from a SC, multiple events are additionally required in more differentiated cells. Interestingly, the level of differentiation correlates with the number of transforming events required to induce a stem-like phenotype, a long-lived potential and a tumourigenic capacity in a progenitor, a transient amplifying or even in a terminally differentiated cell. Furthermore, it is well described that SCCs originating from different cells of origin differ not only in their squamous differentiation status but also in their malignant characteristics. This review summarises recent findings in cutaneous SCC and highlights transforming oncogenic events in specific cell populations. It underlines oncogenes that are restricted either to stem or differentiated cells, which could provide therapeutic target selectivity against heterogeneous SCC. This strategy may be applicable to SCC from different body locations, such as head and neck SCCs, which are currently still associated with poor survival outcomes.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/etiology , Neoplastic Stem Cells/drug effects , Skin Neoplasms/drug therapy , Skin Neoplasms/etiology , Animals , Biomarkers, Tumor , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic/drug effects , Genome-Wide Association Study , Humans , Inflammation Mediators/metabolism , Molecular Targeted Therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Skin Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...