Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(3): e14413, 2024.
Article in English | MEDLINE | ID: mdl-38924553

ABSTRACT

In recent years, there has been an increase in the study of phytomelatonin. Having numerous functions in animals, melatonin produced by plants (phytomelatonin) is also a multi-regulatory molecule with great potential in plant physiology and in mitigating abiotic stresses, such as drought, salinity, chilling, heat, chemical contamination, and UV-radiation stress. This review highlights the primary functions of phytomelatonin as an anti-stress molecule against abiotic stress. We discuss the role of phytomelatonin as a master regulator, oxidative stress manager, reactive oxygen species and reactive nitrogen species regulator, and defense compounds inducer. Although there exist a handful of reviews on the crosstalk of phytomelatonin with other signaling molecules like auxin, cytokinin, gibberellin, abscisic acid, ethylene, nitric oxide, jasmonic acid, and salicylic acid, this review looks at studies that have reported a few aspects of phytomelatonin with newly discovered signaling molecules along with classical signaling molecules with relation to abiotic stress tolerance. The research and applications of phytomelatonin with hydrogen sulfide, strigolactones, brassinosteroids, and polyamines are still in their nascent stage but hold a promising scope for the future. Additionally, this review states the recent developments in the signaling of phytomelatonin with nitrogen metabolism and nitrosative stress in plants.


Subject(s)
Homeostasis , Melatonin , Plants , Signal Transduction , Stress, Physiological , Melatonin/metabolism , Plants/metabolism , Plants/radiation effects , Plant Physiological Phenomena , Plant Growth Regulators/metabolism
2.
Food Res Int ; 174(Pt 1): 113580, 2023 12.
Article in English | MEDLINE | ID: mdl-37986448

ABSTRACT

Pineapple-peel-based chitosan film was employed to extend the shelf life of Indian Cottage Cheese, commonly termed "paneer" in the Indian subcontinent. Pineapple peel extracts (PPE) at 3 different concentrations (1-3 %) were incorporated into the chitosan matrix. In comparison to control samples (unpacked paneer), packaged paneer samples exhibited reduced weight loss, lipid peroxidation, and pH changes. The microbiological shelf life of paneer got extended till 9th day at 4 °C when packaged in chitosan-PPE films. Korsmeyer-Peppas's model suggested that the release of polyphenols from the chitosan-PPE film followed Fickian diffusion. As per sensory evaluation on a 9-point hedonic scale, packaged paneer samples were superior in juiciness, texture, color, flavor, and overall acceptability compared to unpackaged paneer samples. As compared to the control sample (CS), the overall acceptance was higher for the film with 1 % pineapple peel extract (CS PPE 1), followed by films with 2 % and 3 % pineapple peel extracts (CS-PPE 2 and CS-PPE 3). The bio-accessibility study utilized the dynamic gastric model to simulate digestion in the upper gastrointestinal tract and revealed 40-60 % recovery rate of polyphenols from the chitosan-pineapple peel film.


Subject(s)
Ananas , Cheese , Chitosan , Antioxidants , Polyphenols , Plant Extracts
3.
J Food Sci Technol ; 60(3): 1077-1087, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36908349

ABSTRACT

The effect of PVAc (Polyvinyl acetate) coating on various characteristics of capsicum was determined during postharvest storage at room temperature (30 ± 1 °C) and refrigeration temperature (10 ± 1 °C). Food grade PVAc was used to make different coating formulations (2.5, 5, 7.5, 10 and 12.5%) by dissolving alcohol-water mixtures. After coating, the samples were stored at room temperature (30 ± 1 °C) and refrigeration temperature (10 ± 1 °C) for a comparative study. Various physicochemical parameters viz. weight loss, TSS, acidity, chlorophyll, pH, ascorbic acid, and color were analyzed every three days of storage till spoilage. Results revealed that the physicochemical characteristics and the quality of the bell peppers were improved by coating treatments at both the storage conditions. PVAc concentrations of 10 and 12.5% performed better than other PVAc coatings in retaining the chlorophyll and water content, which ultimately increased the shelf life of capsicum without significantly affecting its green color. The coating reduced the weight loss and color change, maintained total soluble solids, titratable acidity, pH over the storage period. About 40-50% less weight loss was observed in case of higher PVAc coating concentrations (10 and 12%). Therefore, the present study results suggested that PVAc coating can maintain postharvest storage quality of capsicum at 30 ± 1 °C and 10 ± 1 °C storage conditions.

4.
Food Res Int ; 162(Pt B): 112089, 2022 12.
Article in English | MEDLINE | ID: mdl-36461397

ABSTRACT

Various oxidative enzymes account for the quality degradation of sapodilla (Manilkara achras L.) juice and need to be inactivated through emerging and continuous green pressure processing technology. In this study, pressurization of sapodilla juice was attempted via microfluidization (MF) at pressure range of 10,000-30,000 pound per square inch (psi) with 1-3 passes or cycles. The impact of microfluidization on the activity of polyphenol oxidase (PPO), peroxidase (POD), color, total soluble solid (TSS), viscosity, serum cloudiness along with particle size, and microbial load of sapodilla juice was assessed. Results showed that microfluidization (MF) decreased the residual PPO activity from 100 to 80.78 % and POD activity from 100 to 40.57%. However, TSS (18.81-19.01 %), viscosity (2.64-2.06 cP), serum cloudiness (2.19-1.22 %) and total color change (3.19-18.54) was also significantly affected. Most of these changes were observed due to particle size (PS) reduction that varied from 65.19 to 8.13 µm. Microfluidized juice revealed color improvement at particular MF pressure and pass due to enzyme inactivation. Moreover, lowest microbial load (2.89 Log CFU/ mL) was found at 30,000 psi/3 pass of MF as compared to control sample (unprocessed juice) (7.57 Log CFU/ mL). Consequently, MF can be potential candidate in processing of juices against spoilage.


Subject(s)
Manilkara , Catechol Oxidase , Coloring Agents , Food , Viscosity
5.
Foods ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36140950

ABSTRACT

Thin-layer convective drying of plantain banana was performed at four different temperatures from 50 to 80 °C, with slice thicknesses from 2 to 8 mm. The drying curves, fitted to seven different semi-empirical mathematical models, were successfully used to fit experimental data (R2 0.72−0.99). The diffusion approach had better applicability in envisaging the moisture ratio at any time during the drying process, with the maximum correlation value (R2 0.99) and minimum value of x2 (2.5×10−5 to 1.5×10−4) and RMSE (5.0 ×10−3 to 1.2×10−2). The Deff, hm, and Ea values were calculated on the basis of the experimental data, and overall ranged from 1.11×10−10 to 1.79×10−9 m2 s−1, 3.17×10−8 to 2.20 ×10−7 m s−1 and 13.70 to 18.23 kJ mol−1, respectively. The process energy consumption varied from 23.3 to 121.4 kWh kg−1. The correlation study showed that the drying temperature had a close correlation with hm value and sample hardness. A significant (p < 0.05) increase in hardness of dried plantain banana was observed at 80 °C compared to the other temperatures. Additionally, the sample hardness and process energy consumption were more positively correlated with the thickness of the samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...