Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 870: 162011, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36737017

ABSTRACT

Bat populations are dwindling worldwide due to anthropogenic activities like agriculture, however the role that pesticide exposure plays on these declines is unclear. To address these research gaps, we first need to develop reliable methods to detect and monitor exposure to environmental pollutants and its effects on free-living bats. The use of biomarkers is a sensitive and informative tool to study sublethal effects in wildlife, however it requires laboratory validation and integrative approaches to be applicable to free-living species. In this study, we propose a set of non-destructive biomarkers to evaluate pesticide exposure in free-ranging bats and validated their suitability with dose-exposure experiments in captivity. We selected three biomarkers that have been widely used in vertebrate ecotoxicology and that combined represent sensitive, specific, and ecologically relevant responses to pollutants: DNA damage, AChE activity, and leukocyte profiles. We used two insectivorous bat species as model species Eptesicus fuscus (laboratory) and Pteronotus mexicanus (field). We found that micronuclei frequency (genotoxicity) and AChE activity (exposure and neurotoxicity) were robust indicators of toxicant exposure. The validity of this set of endpoints was supported by their consistent performance in laboratory and field experiments as well as by the significant correlation among them. Leukocyte profile (systemic stress) results were not consistent between laboratory and field studies, suggesting further evaluation of its suitability is needed. Integrative approaches, like the one we used here, maximize the insights about toxicant effects by combining the information of single biomarkers into more meaningful inferences, which can be applied to environmental risk assessments in wildlife. Furthermore, the use of non-destructive, cost-effective biomarkers is imperative when assessing toxicant exposure and effects in vulnerable wildlife and it should be a priority in the field of wildlife toxicology.


Subject(s)
Chiroptera , Environmental Pollutants , Pesticides , Animals , Pesticides/toxicity , Animals, Wild , Environmental Pollutants/toxicity , Hazardous Substances , Biomarkers
2.
Can J Diabetes ; 47(2): 207-221, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36481263

ABSTRACT

Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic ß cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived ß cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Mice , Biology , Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...