Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pept Res Ther ; 29(1): 11, 2023.
Article in English | MEDLINE | ID: mdl-36532362

ABSTRACT

The white spot disease causes significant damage to global aquaculture production. A prominent vaccine, eliciting the immunogenicity of freshwater fishes against Ichthyophthirius multifiliis yet to be developed. Thus, an Immunoinformatic drive was implemented to find out the potential epitopes from the surface immobilization antigens. B-cell derived T-cell epitopes are promiscuous elements for new generation peptide-based vaccine designing. A total of eight common B and T-cell epitopes had filtered out with no overlapping manner. Subsequently, the common epitopes are linked up with EAAAKEAAAKEAAAK linker peptides, we also added L7/L12 ribosomal protein adjuvant at the N- terminal side of peptide sequence for eliciting the immune response in a better way. The secondary and tertiary structural properties of the modeled 3D protein revealed that the protein had all the properties required for a protective immunogen. Afterward, three globally used validation server: PROCKECK, ProSA and ERRAT were used to justify the proper coordinate. NMR, Crystallographic range and error plot calculation for vaccine model also been done respectively. This was followed by molecular docking, MD simulation, NMA analysis, in silico cloning and vaccine dose-based immune response simulation to evaluate the immunogenic potency of the vaccine construct. The in silico immune simulation in response to multi-epitopes show antibody generation and elevated levels of cell-mediated immunity during repeated exposure of the vaccine. The favourable results of the in silico analysis significantly specify that the vaccine construct is really a powerful vaccine candidate and ready to proceed to the next steps of experimental validation and efficacy studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10989-022-10475-1.

2.
Gene ; 719: 144071, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31454539

ABSTRACT

RNA interference (RNAi) has extensive potential to revolutionize every aspect of clinical application in biomedical research. One of the promising tools is the Small interfering RNA (siRNA) molecules within a cellular component. Principally, siRNA mediated innovative advances are increasing rapidly in support of cancer diagnosis and therapeutic purposes. Conversely, it has some delivery challenges to the site of action within the cells of a target organ, due to the progress of nucleic acids engineering and advance material science research contributing to the exceptional organ-specific targeted therapy. This siRNA based therapeutic technique definitely favors a unique and effective prospect to cancer patients. Herein, the significant drive also takes to review and summarize the major organ specific targets of diverse siRNAs based gene silencing mechanism. This machinery promisingly served as the inhibitor components for cancer development in the human model. Furthermore, the focus is also given to current applications on siRNA based quantifiable therapy leading to the silencing of cancer related gene expression in a sequence dependent and selective manner for cancer treatment. That might be a potent tool against the traditional chemotherapy techniques. Therefore, the siRNA mediated cancer gene therapy definitely require sharp attention like future weapons in opposition to cancer by the method of non-invasive siRNA delivery and effective gene silencing approaches.


Subject(s)
Genetic Therapy/methods , Neoplasms/therapy , RNA, Small Interfering/therapeutic use , Humans , Neoplasm Proteins/metabolism , Neoplasms/genetics , Protein Binding , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...