Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2223): 20180630, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31007548

ABSTRACT

This article illustrates the application of multiple scales analysis to two archetypal quasi-linear systems; i.e. to systems involving fast dynamical modes, called fluctuations, that are not directly influenced by fluctuation-fluctuation nonlinearities but nevertheless are strongly coupled to a slow variable whose evolution may be fully nonlinear. In the first case, fast waves drive a slow, spatially inhomogeneous evolution of their celerity field. Multiple scales analysis confirms that, although the energy E, the angular frequency ω and the modal structure of the waves evolve, the wave action E/ω is conserved in the absence of forcing and dissipation. In the second system, the fast modes undergo an instability that is saturated through a feedback on the slow variable. A new multi-scale analysis is developed to treat this case. The key technical point, confirmed by the analysis, is that the fluctuation energy and mode structure evolve slowly to ensure that the slow field remains in a state of near marginal stability. These two model systems appear to be generic, being representative of many if not all quasi-linear systems. In each case, numerical simulations of both the full and reduced dynamical systems are performed to highlight the accuracy and efficiency of the multiple scales approach. Python codes are provided as electronic supplementary material.

2.
Philos Trans A Math Phys Eng Sci ; 375(2089)2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28167583

ABSTRACT

Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed 'vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.

3.
Philos Trans A Math Phys Eng Sci ; 375(2089)2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28167585

ABSTRACT

Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.

4.
Phys Rev Lett ; 116(21): 214501, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27284660

ABSTRACT

Quasilinear theory is often utilized to approximate the dynamics of fluids exhibiting significant interactions between mean flows and eddies. We present a generalization of quasilinear theory to include dynamic mode interactions on the large scales. This generalized quasilinear (GQL) approximation is achieved by separating the state variables into large and small zonal scales via a spectral filter rather than by a decomposition into a formal mean and fluctuations. Nonlinear interactions involving only small zonal scales are then removed. The approximation is conservative and allows for scattering of energy between small-scale modes via the large scale (through nonlocal spectral interactions). We evaluate GQL for the paradigmatic problems of the driving of large-scale jets on a spherical surface and on the beta plane and show that it is accurate even for a small number of large-scale modes. As GQL is formally linear in the small zonal scales, it allows for the closure of the system and can be utilized in direct statistical simulation schemes that have proved an attractive alternative to direct numerical simulation for many geophysical and astrophysical problems.

SELECTION OF CITATIONS
SEARCH DETAIL
...