Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(39): 34405-34415, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28901125

ABSTRACT

This paper reports on a simple and cost-effective process of developing a stable surface-enhanced Raman scattering (SERS) substrate based on silver (Ag) nanoparticles deposited on silicon (Si) surface. Durability is an important issue for preparing SERS active substrate as silver nanostructures are prone to rapid surface oxidation when exposed to ambient conditions, which may result in the loss of the enhancement capabilities in a short period of time. Here, we employ the galvanic displacement method to produce Ag nanoparticles on Si(100) substrate prepatterned with arrays of micropyramids by chemical etching, and subsequently, separate pieces of such substrates were annealed in oxygen and nitrogen environments at 550 °C. Interestingly, while nitrogen-annealed Si substrates were featured by spherical-shaped Ag particles, the oxygen annealed Si substrates were dominated by the formation of triangular shape particles attached with the spherical one. Remarkably, the oxygen-annealed substrate thus produced shows very high SERS enhancement compared to the either unannealed or nitrogen annealed substrate. The hitherto unobserved coexistence of triangular morphology with the spherical one and the gap between the two (source of efficient hot-spots) are the origin of enhanced SERS activity for the oxygen-annealed Ag particle-covered Si substrate as probed by the combined finite-difference time domain (FDTD) simulation and cathodoluminesensce (CL) experiment. As the substrate has already been annealed in an oxygen environment, further probability of oxidation is reduced in the present synthesis protocol that paves the way for making a novel long-lived thermally stable SERS substrate.

2.
Phys Chem Chem Phys ; 16(31): 16730-9, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25000224

ABSTRACT

Dendritic silver nanostructures were prepared by a simple dip-and-rinse galvanic displacement reaction directly on germanium surfaces. The formation and evolution of these dendrites were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The present results clearly show a new type of heteroepitaxy, where the large lattice mismatch between silver and germanium is accommodated at the interface by the formation of low-energy asymmetric tilt boundaries. The overgrown samples reduce the strain by introducing crystal defects. Additionally, by employing cathodoluminescence (CL) spectroscopy and imaging with a field emission gun scanning electron microscope (FEG-SEM), we provide information on the surface plasmon assisted photon emission of a stack of Ag hexagonal nanostructures. Surface enhanced Raman scattering (SERS) studies show the suitability of such Ag nanodendritic structures as SERS active substrates.

3.
Nanotechnology ; 24(40): 405704, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24029251

ABSTRACT

We performed cathodoluminescence (CL) spectroscopy and imaging in a high-resolution scanning electron microscope to locally and selectively excite and investigate the plasmonic properties of a multi-branched gold nanostar on a silicon substrate. This method allows us to map the local density of optical states from the nanostar with a spatial resolution down to a few nanometers. We resolve, both in the spatial and spectral domain, different plasmon modes associated with the nanostar. Finite-difference time-domain (FDTD) numerical simulations are performed to support the experimental observations. We investigate the effect of the substrate on the plasmonic properties of these complex-shaped nanostars. The powerful CL-FDTD combination helps us to understand the effect of the substrate on the plasmonic response of branched nanoparticles.

4.
Environ Monit Assess ; 176(1-4): 473-81, 2011 May.
Article in English | MEDLINE | ID: mdl-20635201

ABSTRACT

Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and tunneling electron microscopy (TEM) studies of two solid vehicle wastes (pollutants) from petrol- and diesel-fueled engines of Kolkata (India) have detected a significant amount of ultrafine particles in the nanometer scale in these wastes. Both powder XRD and selected area electron diffraction from TEM have confirmed the existence of inhomogeneous distribution of nanocrystallites in these pollutants. Energy dispersive X-ray spectrometry shows that these wastes contain mainly carbon and oxygen as the constituent components. These pollutants are magnetic in nature as seen with SQUID magnetometry, and the presence of a high amount of carbon presumably is likely the origin of the magnetic property.


Subject(s)
Automobiles , Particulate Matter/analysis , Environmental Monitoring , Microscopy, Atomic Force , Spectrometry, X-Ray Emission , X-Ray Diffraction
5.
J Phys Condens Matter ; 21(22): 224004, 2009 Jun 03.
Article in English | MEDLINE | ID: mdl-21715743

ABSTRACT

The formation of a self-organized nanoscale ripple pattern after off-normally incident ion bombardment on the surface of amorphous materials, or on semiconductors like silicon that are easily amorphized by ion bombardment, has attracted much attention in recent years from the point of view of both theory and applications. As the energy of the impinging ions increases from low to medium, i.e. several hundred eV to a few tens of keV, the ratio of amplitude to wavelength of the generated ripple pattern becomes so large that inter-peak shadowing of the incident ion flux takes place. Morphologically, the sinusoidal surface profile starts to become distorted after prolonged ion bombardment under such conditions. Structural and compositional modifications of the ripple morphology generated under shadowing conditions include the formation of a thicker amorphous layer with high incorporation of argon atoms in the form of nanometer sized bubbles around the middle part of the front slope of the ripple facing the ion beam, as compared to the rear slope. The present paper reviews recent developments in the experimental study of morphological, structural and compositional aspects of ripple patterns generated on a silicon surface after medium keV (30-120 keV) argon bombardment mainly at an angle of ion incidence of 60°.

SELECTION OF CITATIONS
SEARCH DETAIL
...