Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(23): 11233-11242, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37992235

ABSTRACT

Rechargeable magnesium batteries (RMBs) have been proposed as a promising alternative to currently commercialized lithium-ion batteries. However, Mg anode passivation in conventional electrolytes necessitates the use of highly corrosive Cl- ions in the electrolyte. Herein for the first time, we design a chloride-free electrolyte for RMBs with magnesium bis(hexamethyldisilazide) (Mg(HMDS)2) and magnesium triflate (Mg(OTf)2) as the main salts and tetrabutylammonium triflate (TBAOTf) as an additive. The TBAOTf additive improved the dissolution of Mg salts, consequently enhancing the charge-carrying species in the electrolyte. COMSOL studies further revealed desirable Mg growth in our modulated electrolyte, substantiated by homogeneous electric flux distribution across the electrolyte-electrode interface. Post-mortem chemical composition analysis uncovered a MgF2-rich solid electrolyte interphase (SEI) that facilitated exceptional Mg deposition/dissolution reversibility. Our study illustrates a highly promising strategy for synthesizing a corrosion-free and reversible Mg battery electrolyte with a widened anodic stability window of up to 4.43 V.

2.
Nano Lett ; 23(8): 3592-3598, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37036465

ABSTRACT

MXenes and sulfurized polyacrylonitrile (S-PAN) are emerging as possible contenders to resolve the polysulfide dissolution and volumetric expansion issues in sodium-sulfur batteries. Herein, we explore the interactions between Ti3C2Tx MXenes and S-PAN with traditional binders such as polyvinylidene difluoride (PVDF), poly(acrylic acid) (PAA), and carboxymethyl cellulose (CMC) in Na-S batteries for the first time. We hypothesize that the linearity and polarity of the binder significantly influence the dispersion of S-PAN over Ti3C2Tx. The three-dimensional polar CMC binder resulted in better contact surface area with both S-PAN and Ti3C2Tx. Moreover, the improved binding of the discharge products with the CMC binder effectively traps them and prevents unwanted shuttling. Consequently, the Na-S battery using the CMC binder displayed a high initial capacity of 1282 mAh/g(s) at 0.2 C and a low capacity fading of 0.092% per cycle over 300 cycles. This work highlights the importance of understanding MXene-binder interactions in sulfur cathodes.

3.
Nano Lett ; 23(4): 1564-1572, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36749889

ABSTRACT

Highly reversible Mg battery chemistry demands a suitable electrolyte formulation highly compatible with currently available electrodes. In general, conventional electrolytes form a passivation layer on the Mg anode, requiring the use of MgCl2 additives that lead to severe corrosion of cell components and low anodic stability. Herein, for the first time, we conducted a comparative study of a series of Mg halides as potential electrolyte additives in conventional magnesium bis(hexamethyldisilazide)-based electrolytes. A novel electrolyte formulation that includes MgBr2 showed unprecedented performance in magnesium plating/stripping, with an average Coulombic efficiency of 99.26% over 1000 cycles at 0.5 mA/cm2 and 0.5 mAh/cm2. Further analysis revealed the in situ formation of a robust Mg anode-electrolyte interface, which leads to dendrite-free Mg deposition and stable cycling performance in a Mg-Mo6S8 battery over 100 cycles. This study demonstrates the rational formulation of a novel MgBr2-based electrolyte with high anodic stability of 3.1 V for promising future applications.

4.
Nanomicro Lett ; 15(1): 21, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36580172

ABSTRACT

Rechargeable Al batteries (RAB) are promising candidates for safe and environmentally sustainable battery systems with low-cost investments. However, the currently used aluminum chloride-based electrolytes present a significant challenge to commercialization due to their corrosive nature. Here, we report for the first time, a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate (Al(OTf)3) with tetrabutylammonium chloride (TBAC) additive in diglyme. The presence of a mere 0.1 M of TBAC in the Al(OTf)3 electrolyte generates the charge carrying electrochemical species, which forms the basis of reaction at the electrodes. TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)3 to generate the solid electrolyte interphase components. Our electrolyte's superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests, the longest cycling life reported to date. This unique combination of salt and additive is non-corrosive, exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations, which makes it commercially promising. Through this report, we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.

5.
J Colloid Interface Sci ; 606(Pt 1): 101-112, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34388564

ABSTRACT

Transition metal sulfides have been intensively investigated as an effective catalyst for overall water splitting application due to their inexorable bifunctional oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity. However, the chalcogenides are oxidised during the OER process and hence limit the stability of the electrocatalyst. The synthesized materials should have a higher oxidation state corresponding to the active species in order to improve the stability. In this study, we have employed a one-step chemical bath deposition (CBD) route to synthesis bimetallic copper nickel sulfide (CuNiS) electrocatalyst. We have accomplished a superior OER electrocatalytic activity with a lower overpotential of 337 mV at 10 mA/cm2 current density and a small Tafel slope of 43 mV/dec. Also, we have achieved an excellent HER activity with a very low overpotential of 99 mV at 10 mA/cm2 and a Tafel slope of 63 mV/dec. The constructed electrolyzer attained a lower cell voltage of only 1.55 V to reach the current density of 10 mA/cm2. The stability test carried at a high current density of 200 mA/cm2 for 50 h showed less than 5% increase in Ni3+ active species at the surface ensure the stable performance nature. Thus, this work provides a promising methodology for the synthesis of bimetallic sulfides for enhanced electrocatalytic water splitting with exceptional reliability.

6.
ChemSusChem ; 14(5): 1324-1335, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33381900

ABSTRACT

Tungsten-doped Ni-Fe hydroxides fabricated on a three-dimensional nickel foam through cathodic electrodeposition are proposed as effective oxygen evolution reaction (OER) catalysts for alkaline water oxidation. Incorporating an adequate amount of W into Ni-Fe hydroxides modulates the electronic structure by changing the local environment of Ni and Fe and create oxygen vacancies, resulting in abundant active sites for the OER. The optimized electrocatalyst, with a substantial number of catalytic sites, is found to outperform the well-established 20 wt% Ir/C electrocatalyst. The catalyst only requires small overpotentials of 224 mV and 251 mV to generate current densities of 10 mA cm-2 and 50 mA cm-2 , respectively, at an extremely low Tafel slope. Surface study after long-term chronopotentiometry (ca. 30 h) reveals that the tungsten dopant undergoes reduction to stabilize the Ni and Fe active sites for predominant water oxidation. This research provides new insight to apply optimum amounts of tungsten doping to enable more significant electronic coupling within Ni-Fe for the chemisorption of hydroxy and oxygen intermediates and greatly improved OER activity.

7.
Chemphyschem ; 19(12): 1507-1513, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29575706

ABSTRACT

Organic-inorganic lead halide perovskite phases segregate (and their structures degrade) under illumination, exhibiting a poor stability with hysteresis and producing halide accumulation at the surface.In this work, we observed structural and interfacial dissociation in methylammonium lead iodide (CH3 NH3 PbI3 ) perovskites even under dark and vacuum conditions. Here, we investigate the origin and consequences of self-degradation in CH3 NH3 PbI3 perovskites stored in the dark under vacuum. Diffraction and photoelectron spectroscopic studies reveal the structural dissociation of perovskites into PbI2 , which further dissociates into metallic lead (Pb0 ) and I2- ions, collectively degrading the perovskite stability. Using TOF-SIMS analysis, AuI2- formation was directly observed, and it was found that an interplay between CH3 NH3+ , I3- , and mobile I- ions continuously regenerates more I2- ions, which diffuse to the surface even in the absence of light. Besides, halide diffusion causes a concentration gradient between Pb0 and I2- and creates other ionic traps (PbI2- , PbI- ) that segregate as clusters at the perovskite/gold interface. A shift of the onset of the absorption band edge towards shorter wavelengths was also observed by absorption spectroscopy, indicating the formation of defect species upon aging in the dark under vacuum.

8.
ACS Omega ; 3(2): 1718-1725, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458490

ABSTRACT

The stability and performance of supercapacitor devices are limited by the diffusion-controlled redox process occurring at materials' surfaces. Phosphate-based metal oxides could be effectively used as pseudocapacitors because of their polar nature. However, electrochemical energy storage applications of Mn-Co-based phosphate materials and their related kinetics studies have been rarely reported. In this work, we have reported a morphology-tuned Mn x Co3-x (PO4)2·8H2O (MCP) spinel compound synthesized by a one-step hydrothermal method. Detailed physical and chemical insights of the active material coated on the nickel substrate are examined by X-ray diffraction, field-emission scanning electron microscopy, field-emission transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy analyses. Physiochemical studies reveal that the well-defined redox behavior usually observed in Co2+/Ni2+ surface-terminated compounds is suppressed by reducing the divalent cation density with an increased Co3+ and Mn3+ surface states. A uniform and dense leaflike morphology observed in the MnCo2 phosphate compound with an increased surface area enhances the electrochemical energy storage performance. The high polar nature of P-O bonding formed at the surface leads to a higher rate of polarization and a very low relaxation time, resulting in a perfect square-shaped cyclic voltagram and triangular-shaped galvanostatic charge and discharge curve. We have achieved a highly pseudocapacitive MCP, and it can be used as a vital candidate in supercapacitor energy storage applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...