Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904532

ABSTRACT

Fibrous structures, in general, have splendid advantages in different forms of micro- and nanomembranes in various fields, including tissue engineering, filtration, clothing, energy storage, etc. In the present work, we develop a fibrous mat by blending the bioactive extract of Cassia auriculata (CA) with polycaprolactone (PCL) using the centrifugal spinning (c-spinning) technique for tissue-engineered implantable material and wound dressing applications. The fibrous mats were developed at a centrifugal speed of 3500 rpm. The PCL concentration for centrifugal spinning with CA extract was optimized at 15% w/v of PCL to achieve better fiber formation. Increasing the extract concentration by more than 2% resulted in crimping of fibers with irregular morphology. The development of fibrous mats using a dual solvent combination resulted in fine pores on the fiber structure. Scanning electron microscope (SEM) images showed that the surface morphology of the fibers in the produced fiber mats (PCL and PCL-CA) was highly porous. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the CA extract contained 3-methyl mannoside as the predominant component. The in vitro cell line studies using NIH3T3 fibroblasts demonstrated that the CA-PCL nanofiber mat was highly biocompatible, supporting cell proliferation. Hence, we conclude that the c-spun, CA-incorporating nanofiber mat can be employed as a tissue-engineered construct for wound healing applications.

2.
IET Nanobiotechnol ; 13(8): 824-828, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31625522

ABSTRACT

In this study, green synthesis of gold nanoparticles (AuNPs) was performed by a sunlight irradiation method using the Borassus flabellifer fruit extract as a reducing agent. 5-Fluorouracil (5-FU)-loaded GG capped AuNPs (5FU-G-AuNPs) was prepared. The nanoparticles was further characterised by UV-visible spectra, particle size analysis, zeta potential, SAED, HRTEM, and XRD. The MTT assay results showed the suitability 5-FU-G-AuNPs. In this study, 5-FU-G-AuNPs exhibited potential cytotoxic and apoptotic effects on (MiaPaCa-2) cell line.


Subject(s)
Drug Carriers/chemical synthesis , Fluorouracil/administration & dosage , Gold/chemistry , Metal Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Drug Carriers/chemistry , Drug Compounding/methods , Drug Delivery Systems , Drug Liberation , Drug Screening Assays, Antitumor , Fluorouracil/pharmacokinetics , Green Chemistry Technology , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...